Skip to main content Accessibility help
×
Home

An epidemiological investigation of Campylobacter in pig and poultry farms in the Mekong delta of Vietnam

  • J. J. CARRIQUE-MAS (a1) (a2), J. E. BRYANT (a1) (a2), N. V. CUONG (a1), N. V. M. HOANG (a1), J. CAMPBELL (a1), N. V. HOANG (a3), T. T. N. DUNG (a1), D.T. DUY (a1), N. T. HOA (a1) (a2), C. THOMPSON (a1) (a2), V. V. HIEN (a3), V. V. PHAT (a1), J. FARRAR (a1) (a2) and S. BAKER (a1) (a2) (a4)...

Summary

Campylobacter are zoonotic pathogens commonly associated with gastroenteritis. To assess the relevance of Campylobacter in Vietnam, an economically transitioning country in SE Asia, we conducted a survey of 343 pig and poultry farms in the Mekong delta, a region characterized by mixed species farming with limited biosecurity. The animal-level prevalence of Campylobacter was 31·9%, 23·9% and 53·7% for chickens, ducks and pigs, respectively. C. jejuni was predominant in all three host species, with the highest prevalence in pigs in high-density production areas. Campylobacter isolates demonstrated high levels of antimicrobial resistance (21% and 100% resistance against ciprofloxacin and erythromycin, respectively). Multilocus sequence type genotyping showed a high level of genetic diversity within C. jejuni, and predicted C. coli inter-species transmission. We suggest that on-going intensification of animal production systems, limited biosecurity, and increased urbanization in Vietnam is likely to result in Campylobacter becoming an increasingly significant cause of human diarrhoeal infections in coming years.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An epidemiological investigation of Campylobacter in pig and poultry farms in the Mekong delta of Vietnam
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An epidemiological investigation of Campylobacter in pig and poultry farms in the Mekong delta of Vietnam
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An epidemiological investigation of Campylobacter in pig and poultry farms in the Mekong delta of Vietnam
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

* Author for correspondence: Dr J. J. Carrique-Mas, Oxford University Clinical Research Unit, 764 Vo Van Kiet, District 5, Ho Chi Minh City, Vietnam. (Email: jcarrique-mas@oucru.org)

References

Hide All
1. Silva, J, et al. Campylobacter spp. as a foodborne pathogen: a review. Frontiers in Food Microbiology 2011; 2: 200.
2. WHO. Campylobacter: Fact sheet no. 255, 2011. (http://www.who.int/mediacentre/factsheets/fs255/en/index.html). Accessed 4 October 2012.
3. Coker, AO, et al. Human campylobacteriosis in developing countries. Emerging Infectious Diseases 2002; 8: 237244.
4. Hermans, D, et al. Poultry as a Host for the Zoonotic Pathogen Campylobacter jejuni . Vector-Borne and Zoonotic Diseases 2012; 12: 8998.
5. Fosse, J, Seegers, H, Magras, C. Prevalence and risk factors for bacterial food-bornezoonotic hazards in slaughter pigs: a review. Zoonoses and Public Health 2009; 56: 429454.
6. Chatre, P, et al. Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from cattle between 2002 and 2006 in France. Journal of Food Protection 2010; 73: 825831.
7. Humphrey, T, O'Brien, S, Madsen, M. Campylobacters as zoonotic pathogens: a food production perspective. International Journal of Food Microbiology 2007; 117: 237257.
8. Olson, C, et al. Epidemiology of Campylobacter jejuni infections in industrialised nations. In: Irving, N, Szymanski, C, Blaser, M, eds. Campylobacter. Washington, DC: ASM Press, 2008, pp. 163189.
9. Domingues, AR, et al. Source attribution of human campylobacteriosis using a meta-analysis of case-control studies of sporadic infections. Epidemiology and Infection 2012; 140: 970981.
10. Sheppard, SK, et al. Campylobacter genotyping to determine the source of human infection. Clinical Infectious Diseases 2009; 48: 10721078.
11. Horrocks, SM, et al. Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe 2009; 15: 1825.
12. Anon. Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the EU, 2008: Part A: Campylobacter and Salmonella prevalence estimates. EFSA Journal 2010; 8: 1503.
13. Lee, MD, Newell, DG. Campylobacter in poultry: Filling an ecological niche. Avian Diseases 2006; 50: 19.
14. Adzitey, F, Huda, N, Ali, GR. Prevalence and antibiotic resistance of Campylobacter, Salmonella, and L. monocytogenes in ducks: a review. Foodborne Pathogens and Disease 2012; 9: 498505.
15. Isenbarger, D, et al. Prospective study of the incidence of diarrhoea and prevalence of bacterial pathogens in a cohort of Vietnamese children along the Red River. Epidemiology and Infection 2001; 127: 229236.
16. Hien, BT, et al. Diarrhoeagenic Escherichia coli and other causes of childhooddiarrhoea: a case-control study in children living in a wastewater-use area in Hanoi, Vietnam. Journal of Medical Microbiology 2007; 56: 10861096.
17. Bodhidatta, L, et al. Rotavirus disease in young children from Hanoi, Vietnam. Pediatric Infectious Disease Journal 2007; 26: 325328.
18. Ha, TA, Pham, TY. Study of Salmonella, Campylobacter, and Escherichia coli contamination in raw food available in factories, schools, and hospital canteens in Hanoi, Vietnam. Annals of the New York Academy of Sciences 2006; 1081: 262265.
19. Luu, QH, et al. Study on the prevalence of Campylobacter spp. from 361 chicken meat in 362 Hanoi, Vietnam. Annals of the New York Academy of Sciences 2006; 1081: 273275.
20. Hwang, MN, Ederer, GM. Rapid hippurate hydrolysis method for presumptive identification of group B streptococci. Journal of Clinical Microbiology 1975; 1: 114115.
21. Linton, D, et al. PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples. Journal of Clinical Microbiology 1997; 35: 25682572.
22. Persson, S, Olsen, KE. Multiplex PCR for identification of Campylobacter coli and Campylobacter jejuni from pure cultures and directly on stool samples. Journal of Medical Microbiology 2005; 54: 10431047.
23. Dingle, KE, et al. Multilocus sequence typing system for Campylobacter jejuni . Journal of Clinical Microbiology 2001; 39: 1423.
24. Dohoo, I, Martyn, W, Stryhn, H. Veterinary Epidemiologic Research, 1st edn. Charlottetown: AVC Inc., 2003.
25. Golstein, H, Browne, H, Rasbash, J. Partitioning variation in multilevel models. Understanding Statistics 2002; 1: 223231.
26. Hosmer, DW, Lemeshow, S. Applied Logistic Regression, 1st edn. New York: Wiley-Interscience, 1989.
27. Burnham, KP, Anderson, DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edn, London: Springer-Verlag, 2002.
28. Saleha, A. Isolation and characterization of Campylobacter jejuni from broiler chickens in Malaysia. International Journal of Poultry Science 2002; 1: 9497.
29. Mansouri-Najand, L, Saleha, AA, Wai, SS. Prevalence of multidrug resistance Campylobacter jejuni and Campylobacter coli in chickens slaughtered in selected markets, Malaysia. Tropical Biomedicine 2012; 29: 231238.
30. Padungtod, P, Kaneene, JB. Campylobacter in food animals and humans in Northern Thailand. Journal of Food Protection 2005; 68: 25192526.
31. Bouwknegt, M, et al. Risk factors for the presence Campylobacter spp. in Dutch broiler flocks. Preventive Veterinary Medicine 2004; 62: 3549.
32. Gregory, E, et al. Epidemiological study of Campylobacter spp. in broilers: source, time of colonization, and prevalence. Avian Diseases 1997; 41: 890898.
33. Lindblom, GB, Sjörgren, E, Kaijser, B. Natural Campylobacter colonization in chickens raised under different environmental conditions. Journal of Hygiene (London) 1986; 96: 385391.
34. Kalupahana, R, et al. Colonization of Campylobacter in broiler chickens and layer hens reared in tropical climates with low-biosecurity. Applied of Environmental Microbiology 2013; 79: 393395.
35. FAO. Poultry production systems in Viet Nam. GCP/RAS/228/GER Working Paper No. 4. Rome. 2008.
36. Jensen, AN, et al. The occurrence and characterization of Campylobacter jejuni and C. coli in organic pigs and their outdoor environment. Veterinary Microbiology 2006; 1–3: 96105.
37. Garin, B, et al. Prevalence, quantification and antimicrobial resistance of Campylobacter spp. on chicken neck-skins at points of slaughter in 5 major cities located on 4 continents. International Journal of Food Microbiology 2012; 157: 102107.
38. Lay, KS, et al. Prevalence, numbers and antimicrobial susceptibilities of Salmonella serovars and Campylobacter spp. in retail poultry in Phnom Penh, Cambodia. Journal of Veterinary Medical Science 2011; 73: 325329.
39. Minh, PQ, et al. A description of the management of itinerant grazing ducks in the Mekong river delta of Vietnam. Preventive Veterinary Medicine 2010; 94: 101107.
40. Henry, I, et al. Prevalence and risk factors for Campylobacter spp. in chicken broiler flocks in Reunion Island (Indian Ocean). Preventive Veterinary Medicine 2011; 100: 6470.
41. Isenbarger, DW, et al. Comparative antibiotic resistance of diarrheal pathogens from 410 Vietnam and Thailand, 1996–1999. Emerging Infectious Diseases 2002; 8: 175180.
42. Hoa, NQ, et al. Unnecessary antibiotic use for mild acute respiratory infections during 28-day follow-up of 823 children under five in rural Vietnam. Transactions of the Royal Society of Tropical Medicine and Hygiene 2011; 105: 628636.
43. GARP. Situation analysis: antibiotic use and resistance in Vietnam. Washington, DC: Center for Disease Dynamics, Economics and Policy, 2010 (http://www.cddep.org/sites/cddep.org/files/publication_files/VN_Report_web_1.pdf). Accessed 17 October 2012.
44. Graham, JP, et al. The animal-human interface and infectious disease in industrial food animal production: rethinking biosecurity and biocontainment. Public Health Reports 2008; 123: 282299.
45. Hou, FQ, Sun, XT, Wang, GQ. Clinical manifestations of Campylobacter jejuni infection in adolescents and adults, and change in antibiotic resistance of the pathogen over the past 16 years. Scandinavian Journal of Infectious Diseases 2012; 44: 439443.

Keywords

Type Description Title
WORD
Supplementary materials

Carrique-Mas Supplementary Material
Table

 Word (338 KB)
338 KB

An epidemiological investigation of Campylobacter in pig and poultry farms in the Mekong delta of Vietnam

  • J. J. CARRIQUE-MAS (a1) (a2), J. E. BRYANT (a1) (a2), N. V. CUONG (a1), N. V. M. HOANG (a1), J. CAMPBELL (a1), N. V. HOANG (a3), T. T. N. DUNG (a1), D.T. DUY (a1), N. T. HOA (a1) (a2), C. THOMPSON (a1) (a2), V. V. HIEN (a3), V. V. PHAT (a1), J. FARRAR (a1) (a2) and S. BAKER (a1) (a2) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed