Skip to main content Accessibility help
×
×
Home

An audit of Cryptosporidium and Giardia detection in Scottish National Health Service Diagnostic Microbiology Laboratories

  • C. L. ALEXANDER (a1), S. CURRIE (a1), K. POLLOCK (a2), A. SMITH-PALMER (a2) and B. L. JONES (a1)...

Summary

Giardia duodenalis and Cryptosporidium species are protozoan parasites capable of causing gastrointestinal disease in humans and animals through the ingestion of infective faeces. Whereas Cryptosporidium species can be acquired locally or through foreign travel, there is the mis-conception that giardiasis is considered to be largely travel-associated, which results in differences in laboratory testing algorithms. In order to determine the level of variation in testing criteria and detection methods between diagnostic laboratories for both pathogens across Scotland, an audit was performed. Twenty Scottish diagnostic microbiology laboratories were invited to participate with questions on sample acceptance criteria, testing methods, testing rates and future plans for pathogen detection. Reponses were received from 19 of the 20 laboratories representing each of the 14 territorial Health Boards. Detection methods varied between laboratories with the majority performing microscopy, one using a lateral flow immunochromatographic antigen assay, another using a manually washed plate-based enzyme immunoassay (EIA) and one laboratory trialling a plate-based EIA automated with an EIA plate washer. Whereas all laboratories except one screened every stool for Cryptosporidium species, an important finding was that significant variation in the testing algorithm for detecting Giardia was noted with only four laboratories testing all diagnostic stools. The most common criteria were ‘travel history’ (11 laboratories) and/or ‘when requested’ (14 laboratories). Despite only a small proportion of stools being examined in 15 laboratories for Giardia (2%–18% of the total number of stools submitted), of interest is the finding that a higher positivity rate was observed for Giardia than Cryptosporidium in 10 of these 15 laboratories. These findings highlight that the underreporting of Giardia in Scotland is likely based on current selection and testing algorithms.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An audit of Cryptosporidium and Giardia detection in Scottish National Health Service Diagnostic Microbiology Laboratories
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An audit of Cryptosporidium and Giardia detection in Scottish National Health Service Diagnostic Microbiology Laboratories
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An audit of Cryptosporidium and Giardia detection in Scottish National Health Service Diagnostic Microbiology Laboratories
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr. C. L. Alexander, Scottish Parasite Diagnostic and Reference Laboratory, Glasgow, Scotland G31 2ER, UK. (Email: Claire.Alexander@ggc.scot.nhs.uk)

Footnotes

Hide All

Both authors contributed equally to the manuscript preparation.

Footnotes

References

Hide All
1. Wensaas, KA, et al. Irritable bowel syndrome and chronic fatigue 3 years after acute giardiasis: historic cohort study. Gut 2012; 61: 214219.
2. Deshpande, A, et al. Molecular diversity of Scottish Cryptosporidium hominis isolates. Epidemiology and Infection 2015; 143(6): 12191224.
3. Utsi, L, et al. Cryptosporidiosis outbreak in visitors of a UK industry-compliant petting farm caused by a rare Cryptosporidium parvum subtype: a case-control study. Epidemiology and Infection 2016; 144: 10001009.
4. McKerr, C, et al. An Outbreak of Cryptosporidium parvum across England & Scotland Associated with Consumption of Fresh Pre-Cut Salad Leaves, May 2012. PLoS ONE 2015; 10: e0125955.
5. Nygård, K, et al. A large community outbreak of waterborne giardiasis- delayed detection in a non-endemic urban area. BMC Public Health 2006; 6: 141150.
6. Bouzid, M, et al. The prevalence of Giardia infection in dogs and cats, a systematic review and meta-analysis of prevalence studies from stool samples. Veterinary Parasitology 2015; 207: 181202.
7. Minetti, C, et al. Occurrence and diversity of Giardia duodenalis assemblages in livestock in the UK. Transbound Emering Diseases 2014; 61: 6067.
8. Batchelor, DJ, et al. Detection of endoparasites with zoonotic potential in dogs with gastrointestinal disease in the UK. Journal of Veterinary Internal Medicine 2007; 21(2): 352355.
9. Leonhard, S, et al. The molecular characterisation of Giardia from dogs in southern Germany. Veterinary Parasitology 2007; 150: 3338.
10. Barutzki, D, et al. Observations on Giardia infection in dogs from veterinary clinics in Germany. Parasitology Research 2007; 101: 153156.
11. Upjohn, M, et al. Prevalence, molecular typing and risk factor analysis for Giardia duodenalis infections in dogs in a central London rescue shelter. Veterinary Parasitology 2010; 172: 341346.
12. UK Standards for Microbiology Investigations Investigation of Faecal Specimens for Enteric Pathogens B30. Issue date: 24·04·14; 8·1: 1–41. (https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/343955/B_30i8.1.pdf). Accessed 9 August 2016.
13. UK Standards for Microbiology Investigations. Investigation of Specimens other than Blood for Parasites B31 (under review Oct 2016). Issue date: 09·05·14; 4·1: 1–48. (https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/554006/B_31i4.1.pdf). Accessed 9 August 2016.
14. UK Standards for Microbiology Investigations. Gastroenteritis and Diarrhoea S7. Issue date: 23·12·13; 1: 1–20. (https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/344110/S_7i1.pdf). Accessed 9 August 2016.
15. Chalmers, RM, et al. An audit of the laboratory diagnosis of cryptosporidiosis in England and Wales. Journal of Medical Microbiology 2015; 64: 688693.
16. Pollock, K. A survey of reporting of Giardia spp. by Scottish microbiology laboratories. SCIEH Weekly Report 2002; 36: 211212.
17. Painter, JE, et al. Giardiasis Surveillance — United States, 2011–2012. Morbidity and Mortality Weekly Report Surveillance Summaries 2015; 64(3): 1525.
18. Minetti, C, et al. Case-control study of risk factors for sporadic giardiasis and parasite assemblages in North West England. Journal of Clinical Microbiology 2015; 53: 31333140. doi:10.1128/JCM.00715-15. pmid:26157151.
19. Ehsan, MA, et al. Cryptosporidium and Giardia in recreational water in Belgium. Journal of Water and Health 2015; 13(3): 870878. doi: 10.2166/wh.2015.268.
20. Wicki, M, et al. Occurrence of Giardia lamblia in recreational streams in Basel-Landschaft, Switzerland. Environmental Research 2009; 109(5): 524527.
21. Ellam, H, et al. Surveillance of giardiasis in Northwest England 1996–2006: impact of an enzyme immunoassay test. Euro Surveillance 2008; 13(37): 15. pii=18977.
22. Chalmers, RM, et al. Comparison of diagnostic sensitivity and specificity of seven Cryptosporidium assays used in the UK. Journal of Medical Microbiology 2011; 60: 15981604.
23. Stensvold, CR, Nielsen, HV. Comparison of microscopy and PCR for detection of intestinal parasites in Danish patients supports an incentive for molecular screening platforms. Journal Clinical Microbiology 2012; 50(2): 540541. doi: 10.1128/JCM.06012-11.
24. Manser, M, et al. Detection of Cryptosporidium and Giardia in clinical laboratories in Europe – a comparative study. Clinical Microbiology and Infection 2014; 20: 6571.
25. Alexander, C, et al. Genotyping of Giardia isolates in Scotland: a descriptive epidemiological study. Epidemiology and Infection 2014; 142(8): 16361639. doi: https://doi.org/10.1017/S0950268813002604.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed