[1]
An, H.B. and Bai, Z.Z., A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations, Appl. Numer. Math.
57, 235–252 (2007).

[2]
An, H.B., Mo, Z.Y. and Liu, X.P., A choice of forcing terms in inexact Newton method, J. Comput. Appl. Math.
200, 47–60 (2007).

[3]
Bai, Z.Z., A class of two-stage iterative methods for systems of weakly nonlinear equations, Numer. Algor.
14, 295–319 (1997).

[4]
Bai, Z.Z., Benzi, M., Chen, F. and Wang, Z.-Q., Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems, IMA J. Numer. Anal.
33, 343–369 (2013).

[5]
Bai, Z.Z. and Golub, G.H., Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal.
27, 1–23 (2007).

[6]
Bai, Z.Z. and Guo, X.P., On Newton-HSS methods for systems of nonlinear equations with positive-definite Jacobian matrices, J. Comput. Math.
28, 235–260 (2010).

[7]
Bai, Z.Z., Golub, G.H. and Li, C.K., Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices, SIAM J. Sci. Comput.
28, 583–603 (2006).

[8]
Bai, Z.Z., Golub, G.H. and Li, C.K., Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math. Comput.
76, 287–298 (2007).

[9]
Bai, Z.Z., Golub, G.H., Lu, L.Z. and Yin, J.F., Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput.
26, 844–863 (2005).

[10]
Bai, Z.Z., Golub, G.H. and Ng, M.K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl.
24, 603–626 (2003).

[11]
Bai, Z.Z., Golub, G.H. and Pan, J.Y., Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math.
98, 1–32 (2004).

[12]
Benzi, M., Gander, M.J. and Golub, G.H., Optimization of the Hermitian and skew-Hermitian splitting iteration for saddle-point problems, BIT Numer. Math.
43, 881–900 (2003).

[13]
Brown, P.N. and Saad, Y., Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Sta. Comput.
11, 450–481 (1990).

[14]
Brown, P.N. and Saad, Y., Convergence theory of nonlinear Newton-Krylov algorithms, SIAM J. Opt.
4, 297–330 (1994).

[15]
Chen, M.H., Lin, R.F. and Wu, Q.B., Convergence analysis of the modified Newton-HSS method under the Hölder continuity condition, J. Comput. Appl. Math.
264, 115–130 (2014).

[16]
Darvishi, M.T. and Barati, A., A third-order Newton-type method to solve systems of nonlinear equations, Appl. Math. Comput.
187, 630–635 (2007).

[17]
Dembo, R.S., Eisenstat, S.C. and Steihaug, T., Inexact Newton methods, SIAM J. Numer. Anal.
19, 400–408 (1982).

[18]
Eisenstat, S.C. and Walker, H.F., Globally convergent inexact Newton methods, SIAM J. Opt.
4, 393–422 (1994).

[19]
Eisenstat, S.C. and Walker, H.F., Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput.
17, 16–32 (1996).

[20]
Elman, H., Silvester, D. and Wathen, A., Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics, Oxford University Press: UK (2014).

[21]
Guo, X.P., On the convergence of Newton's method in Banach space, J. Zhejiang Univ. (Sci. Edit.)
27, 484–492 (2000).

[22]
Guo, X.P., On semilocal convergence of inexact Newton methods, J. Comput. Math.
25, 231–242 (2007).

[23]
Guo, X.P. and Duff, I.S., Semilocal and global convergence of the Newton-HSS method for systems of nonlinear equations, Numer. Linear Algebra Appl.
18, 299–315 (2011).

[24]
Kantorovich, L.V. and Akilov, G.P., Functional Analysis, Pergamon Press: Oxford (1982).

[25]
Kelley, C.T., Iterative Methods for Linear and Nonlinear Equations, SIAM: Philadelphia (1995).

[26]
Li, Y. and Guo, X.P., *Multi-step modified Newton-HSS method for systems of nonlinear equations with positive definite Jacobian matrices*, Numer. Algor., DOI: 10.1007/s11075-016-0196-6 (2016).

[27]
Ortega, J.M. and Rheinboldt, W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press: New York (1970).

[28]
Pernice, M. and Walker, H.F., NITSOL: A Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput.
19, 302–318 (1998).

[29]
Rheinboldt, W.C., Methods of Solving Systems of Nonlinear Equations, 2nd Ed. SIAM: Philadelphia (1998).

[30]
Wu, Q.B. and Chen, M.H., Convergence analysis of modified Newton-HSS method for solving systems of nonlinear equations, Numer. Algor.
64, 659–683 (2013).

[31]
Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd Ed., SIAM: Philadelphia (2003).

[32]
Shen, W.P. and Li, C., Convergence criterion of inexact methods for operators with Hölder continuity derivatives, Taiwanese J. Math.
12, 1865–1882 (2008).

[33]
Wang, X.H. and Guo, X.P., On the unified determination for the convergence of Newton's method and its deformations, Numer. Math. J. Chinese Univ.
4, 363–368 (1999).