Skip to main content Accessibility help
×
Home

High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields

  • Zhen Gao (a1) and Guanghui Hu (a2) (a3)

Abstract

In this study, we propose a high order well-balanced weighted compact nonlinear (WCN) scheme for the gas dynamic equations under gravitational fields. The proposed scheme is an extension of the high order WCN schemes developed in (S. Zhang, S. Jiang, C.-W Shu, J. Comput. Phys. 227 (2008) 7294-7321). For the purpose of maintaining the exact steady state solution, the well-balanced technique in (Y. Xing, C.-W Shu, J. Sci. Comput. 54 (2013) 645-662) is employed to split the source term into two terms. The proposed scheme can maintain the isothermal equilibrium solution exactly, genuine high order accuracy and resolve small perturbations of the hydrostatic balance state on the coarse meshes. Furthermore, in order to capture the strong discontinuities and large gradients, the fifth-order upwind weighted nonlinear interpolations together with the fourth/sixth order cell-centered compact schemes with local characteristic projections are used to construct different WCN schemes. Several representative one- and two-dimensional examples are simulated to demonstrate the good performance of the proposed schemes.

Copyright

Corresponding author

*Corresponding author. Email addresses:zhengao@ouc.edu.cn (Z. Gao), garyhu@umac.mo (G. H. Hu)

References

Hide All
[1] Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R. and Perthame, B., A fast and stable wellbalanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput. 25 (2004) 20502065.
[2] Bermudez, A. and Vazquez, M.E., Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids. 23 (1994) 10491071.
[3] Borges, R., Carmona, M., Costa, B. and Don, W.S., An improved weighted essentially nonoscillatory scheme for hyperbolic conservation laws, J. Comput. Phys. 227 (2008) 31013211.
[4] Botta, N., Klein, R., Langenberg, S. and S. Lützenkirchen, Well-balanced finite volume methods for nearly hydrostatic flows, J. Comput. Phys. 196 (2004) 539565.
[5] Castro, M., Costa, B. and Don, W.S., High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws, J. Comput. Phys. 230 (2011) 17661792.
[6] Chandrashekar, P. and Zenk, M., Well-balanced nodal discontinuous Galerkin method for Euler equations with gravity, J. Sci. Comput. 71 (2015) 10621093.
[7] Chertock, A., Cui, S., Kurganovz, A., Özcan, S.N. and Tadmor, E., Well-balanced central-upwind schemes for the Euler equations with gravitation, SIAM J. Sci. Comput. submitted.
[8] Deng, X., Mao, M., Jiang, Y. and Liu, H., New high-order hybrid cell-edge and cell-node weighted compact nonlinear scheme. In: Proceedings of 20th AIAA CFD conference, AIAA 2011-3847, June 27-30, Honoluu, HI, USA, 2011.
[9] Deng, X. and Maekawa, H., Compact high-order accurate nonlinear schemes, J. Comput. Phys. 130 (1997) 7791.
[10] Deng, X. and Zhang, H., Developing high-order weighted compact nonlinear schemes, J. Comput. Phys. 165 (2000) 2244.
[11] Desveaux, V., Zenk, M., Berthon, C. and Klingenberg, C., A well-balanced scheme for the Euler equation with a gravitational potential. Finite Vol. Complex Appl. VII-Methods Theor. Asp. Springer Proc. Math. Stat. 77 (2014) 217226.
[12] Gao, Z. and Hu, G.H., High order well-balanced weighted compact nonlinear schemes for the shallow water equations, Comm. Comput. Phys. Accepted.
[13] Jiang, G.S. and Shu, C.-W., Efficient implementation of weighted ENO Schemes, J. Comput. Phys. 126 (1996) 202228.
[14] Käppeli, R. and Mishra, S., Well-balanced schemes for the euler equations with gravitation, J. Comput. Phys. 259 (2014) 199219.
[15] Lele, S.A., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103(1) (1992) 1642.
[16] LeVeque, R.J., Balancing source terms and flux gradients on high-resolution Godunovmethods: the quasi-steady wave propagation algorithm, J. Comput. Phys. 146 (1998) 346365.
[17] LeVeque, R.J., Bale, D.S., Wave propagation methods for conservation laws with source terms, In: Proceedings of the 7th International Conference on Hyperbolic Problems, (1998) 609618.
[18] Li, G. and Xing, Y.L., Well-balanced discontinuous Galerkin Methods for the Euler equations under gravitational fields, J. Sci. Comput. 67 (2016) 493513.
[19] Li, G. and Xing, Y.L., High order finite volume WENO schemes for the Euler equations under gravitational fields, J. Comput. Phys. 316 (2016) 145163.
[20] Li, G., Lu, C.N. and Qiu, J.X., Hybrid well-balanced WENO schemes with different indicators for shallow water equations, J. Sci. Comput. 51 (2012) 527559.
[21] Liu, X.L., Zhang, S.H., Zhang, H.X. and Shu, C.-W., A new class of central compact schemes with spectral-like resolution I: Linear schemes, J. Comput. Phys. 248 (2013) 235256.
[22] Luo, J., Xu, K. and Liu, N., A well-balanced symplecticity-preserving gas-kinetic scheme for hydrodynamic equations under gravitational field, SIAM J. Sci. Comput. 33 (2011) 23562381.
[23] Nonomura, T. and Fujii, K., Effects of difference scheme type in high-order weighted compact nonlinear schemes, J. Comput. Phys. 228 (2009) 35333539.
[24] Nonomura, T. and Fujii, K., Robust explicit formulation of weighted compact nonlinear scheme, Comput. Fluids 85 (2013) 818.
[25] Nonomura, T., Iizuka, N. and Fujii, K., Freestream and vortex preservation properties of highorder WENO and WCNS on curvilinear grids, Comput. Fluids 39(2) (2010) 197214.
[26] Nonomura, T., Iizuka, N. and Fujii, K., Increasing order of accuracy of weighted compact nonlinear scheme, In: AIAA-2007-893, 2007.
[27] Perthame, B. and Simeoni, C., A kinetic scheme for the Saint-Venant system with a source term, Calcolo 38, (2001) 201231.
[28] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in: Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E. (Ed.: A. Quarteroni) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, Springer, 1697 (1998) 325432.
[29] Shu, C.-W. and Osher, S., Efficient implementation of essentially non-oscillatory shockcapturing schemes, J. Comput. Phys. 77 (1988) 439471.
[30] Slyz, A., Prendergast, K.H., Time independent gravitational fields in the BGK scheme for hydrodynamics, Astron. Astrophys. Suppl. Ser. 139 (1999) 199217.
[31] Tian, C.T., Xu, K., Chan, K.L. and Deng, L.C., A three-dimensional multidimensional gas-kinetic scheme for the Navier-Stokes equations under gravitational fields, J. Comput. Phys. 226 (2007) 20032027.
[32] Xing, Y. and Shu, C.-W., A survey of high order schemes for the shallow water equations, J. Math. Study 47 (2014) 221249.
[33] Xing, Y. and Shu, C.-W., High order well-balanced WENO scheme for the gas dynamics equations under gravitational fields, J. Sci. Comput. 54 (2013) 645662.
[34] Xing, Y. and Shu, C.-W., High order finite difference WENO schemes with the exact conservation property for the shallow water equations, J. Comput. Phys. 208 (2005) 206227.
[35] Xing, Y. and Shu, C.-W., High order well-balanced finite difference WENO schemes for a class of hyperbolic systems with source terms, J. Sci. Comput. 27 (2006) 477494.
[36] Xing, Y. and Zhang, X., Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes, J. Sci. Comput. 57 (2013) 1941.
[37] Xu, K., A well-balanced gas-kinetic scheme for the shallow-water equations with source terms, J. Comput. Phys. 178 (2002) 533562.
[38] Zhang, S., Jiang, S. and Shu, C.-W., Development of nonlinear weighted compact schemes with increasingly higher order accuracy, J. Comput. Phys. 227 (2008) 7294–321.
[39] Zhu, Q.Q., Gao, Z., Don, W.S. and Lv, X.Q., Well-balanced hybrid Compact-WENO Schemes for shallow water equations, Appl. Num. Math. 112 (2017) 6578.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed