Skip to main content Accessibility help
×
Home

A Block Diagonal Preconditioner for Generalised Saddle Point Problems

  • Zhong Zheng (a1) and Guo Feng Zhang (a1)

Abstract

A lopsided alternating direction iteration (LADI) method and an induced block diagonal preconditioner for solving block two-by-two generalised saddle point problems are presented. The convergence of the LADI method is analysed, and the block diagonal preconditioner can accelerate the convergence rates of Krylov subspace iteration methods such as GMRES. Our new preconditioned method only requires a solver for two linear equation sub-systems with symmetric and positive definite coefficient matrices. Numerical experiments show that the GMRES with the new preconditioner is quite effective.

Copyright

Corresponding author

Corresponding author. Email addresses:zhengzh13@lzu.edu.cn (Z. Zheng), gf_zhang@lzu.edu.cn (G. F. Zhang)

References

Hide All
[1]Axelsson, O. and Neytcheva, M., Eigenvalue estimates for preconditioned saddle point matrices, Numer. Linear Algebra Appl. 13, 339360 (2006).
[2]Bai, Z.Z., Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comput. 75, 791815 (2006).
[3]Bai, Z.Z., Optimal parameters in the HSS–like methods for saddle–point problems, Numer. Linear Algebra Appl. 16, 447479 (2009).
[4]Bai, Z.Z., Motivations and realizations of Krylov subspace methods for large sparse linear systems, J. Comp. Appl. Math. 283, 7178 (2015).
[5]Bai, Z.Z. and Golub, G.H., Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal. 27, 123 (2007).
[6]Bai, Z.Z., Golub, G.H. and Li, C.K., Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices, SIAM J. Sci. Comput. 28, 583603 (2006).
[7]Bai, Z.Z., Golub, G.H. and Li, C.K., Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math. Comput. 76, 287298 (2007).
[8]Bai, Z.Z., Golub, G.H. and Pan, J.Y., Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math. 98, 132 (2004).
[9]Bai, Z.Z., Golub, G.H. and Ng, M.K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24, 603626 (2003).
[10]Bai, Z.Z., Golub, G.H. and Ng, M.K., On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Linear Algebra Appl. 428, 413440 (2008).
[11]Bai, Z.Z., Golub, G.H. and Ng, M.K., On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl. 14, 319335 (2007).
[12]Bai, Z.Z., Parlett, B.N. and Wang, Z.Q., On generalized successive overrelaxation methods for augmented linear systems, Numer. Math. 102, 138 (2005).
[13]Bai, Z.Z. and Wang, Z.Q., On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl. 428, 29002932 (2008).
[14]Benzi, M., Golub, G.H. and Liesen, J., Numerical solution of saddle point problems, Acta Numer. 14, 1137 (2005).
[15]Benzi, M. and Liu, J., Block preconditioning for saddle point systems with indefinite (1, 1) block, Int. J. Comput. Math. 84, 11171129 (2007).
[16]Benzi, M. and Simoncini, V., On the eigenvalues of a class of saddle point matrices, Numer. Math. 103, 173196 (2006).
[17]Bergamaschi, L., On eigenvalue distribution of constraint–preconditioned symmetric saddle point matrices, Numer. Linear Algebra Appl. 19, 754772 (2012).
[18]Bramble, J.H., Pasciak, J.E. and Vassilev, A.T., Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal. 34, 10721092 (1997).
[19]Cao, Z.H., Augmentation block preconditioners for saddle point-type matrices with singular (1, 1) blocks, Numer. Linear Algebra Appl. 15, 515533 (2008).
[20]Cao, Y., Jiang, M.Q. and Zheng, Y.L., A splitting preconditioner for saddle point problems, Numer. Linear Algebra Appl. 18, 875895 (2011).
[21]Chan, L.C., Ng, M.K. and Tsing, N.K., Spectral Analysis for HSS Preconditioners, Numer. Math. Theor. Meth. Appl. 1, 5777 (2008).
[22]Chen, F. and Jiang, Y.L., A generalization of the inexact parameterized Uzawa methods for saddle point problems, Appl. Math. Comput. 206, 765771 (2008).
[23]Elman, H.C., Silvester, D.J. and Wathen, A.J., Iterative methods for problems in computational fluid dynamics, in Iterative Methods in Scientific Computing, Chan, R. H., Chan, C. T., and Golub, G. H. (eds.), pp. 271327, Springer, Singapore (1997).
[24]Elman, H.C., Ramage, A. and Silvester, D.J., Algorithm 866: IFISS: A Matlab toolbox for modelling incompressible flow, ACM Trans, Math. Software (TOMS) 33, 14 (2007).
[25]Elman, H.C., Silvester, D.J. and Wathen, A.J., Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics, Oxford University Press, Oxford, (2005).
[26]Harman, H.H. and Jones, W.H., Factor analysis by minimizing residuals, Psychometrika 30, 351368 (1963).
[27]Li, C.J., Li, B.J. and Evans, D.J., A generalized successive overrelaxation method for least squares problems, BIT Numer. Math. 28, 347355 (1998).
[28]Ma, S.L. and Xu, Z.Y., Neccessary and sufficient conditions for a polynomial of degree 3 or 4 with real coefficients to be a Von Neumann polynomial, Numer. Math. J. Chinese Universities. 3, 274280 (1984).
[29]Notay, Y., A new analysis of block preconditioners for saddle point problems, SIAM J. Matrix Anal. Appl. 35, 143173 (2014).
[30]Pan, J.Y., Ng, M.K. and Bai, Z.Z., New preconditioners for saddle point problems, Appl. Math. Comput. 172, 762771 (2006).
[31]Perugia, I. and Simoncini, V., New Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations, Numer. Linear Algebra Appl. 7, 585616 (2000).
[32]Saad, Y. and Schultz, M.H., GMRES: A generalized minimal residual algorithm for solving non-symmetric linear systems, SIAM J. Sci. Stat. Comput. 7, 856869 (1986).
[33]Shao, X.H., Li, Z. and Li, C.J., Modified SOR-like method for the augmented system, Int. J. Comput. Math. 84, 16531662 (2007).
[34]Wright, S., Stability of augmented system factorizations in interior-point methods, SIAM J. Matrix Anal. Appl. 18, 191222 (1997).
[35]Wang, S.S. and Zhang, G.F., Preconditioned AHSS iteration method for singular saddle point problems, Numer. Algor. 63, 521535 (2013).
[36]Young, D.M., Iterative Solution of Large Linear Systems, Academic Press (1971).
[37]Zhu, M.Z., Zhang, G.F., Zheng, Z. and Liang, Z.Z.On HSS-based sequential two-stage method for non-Hermitian saddle point problems, Appl. Math. Comput. 242, 907916 (2014).

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed