Skip to main content Accessibility help
×
Home

Backward Error Analysis for Eigenproblems Involving Conjugate Symplectic Matrices

  • Wei-wei Xu (a1), Wen Li (a2) and Xiao-qing Jin (a3)

Abstract

Conjugate symplectic eigenvalue problems arise in solving discrete linear-quadratic optimal control problems and discrete algebraic Riccati equations. In this article, backward errors of approximate pairs of conjugate symplectic matrices are obtained from their properties. Several numerical examples are given to illustrate the results.

Copyright

Corresponding author

*Corresponding author. Email address:wwxl9840904@sina.com (W. Xu)

References

Hide All
[1]Tisseur, F., A chart of backward errors for singly and doubly structured eigenvalue problems, SIAM J. Matrix Anal. Appl. 24, 877897 (2003).
[2]Bunse-Gerstner, A., Byers, R. and Mehrmann, V., A chart of numerical methods for structured eigenvalue problems, SIAM J. Matrix Anal. Appl. 13, 419453 (1992).
[3]Sun, J.G., Backward Errors for the Unitary Eigenproblem, Tech. Report UMINF-97.25, Department of Computing Science, University of Umeå, Sweden (1997).
[4]Benner, P. and Fassbender, H., The symplectic eigenvalue problem, the butterfly form, the SR algorithm, and the Lanczos method, Linear Algebra Appl. 275/276, 1947 (1998).
[5]Tisseur, F., Stability of structured Hamiltonian eigensolvers, SIAM J. Matrix Anal. Appl. 23, 103125 (2001).
[6]Mehrmann, V. and Watkins, D., Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils, SIAM J. Sci. Comp. 22, 19051925 (2001).
[7]Benner, P. and Fassbender, H., An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem, Linear Algebra Appl. 263, 75111 (1997).
[8]Higham, D. J. and Higham, N. J., Structured backward error and condition of generalized eigenvalue problems, SIAM J. Matrix Anal. Appl. 20, 493512 (1998).
[9]Higham, D. J. and Higham, N. J., Backward error and condition of structured linear systems, SIAM J. Matrix Anal. Appl. 13, 162175 (1992).
[10]Sun, J. G., Backward perturbation analysis of certain characteristic subspaces, Numer. Math. 65, 357382 (1993).
[11]Xu, Y. H. and Jiang, E. X., An inverse eigenvalue problem for periodic Jacobi matrices, Inverse Problems. 23, 165181 (2007).
[12]Xie, D. X. and Sheng, Y. P., Inverse eigenproblem of anti-symmetric and persymmetric matrices and its approximation, Inverse Problems. 19, 217225 (2003).
[13]Gulliksson, M., Jin, X. Q., and Wei, Y. M., Perturbation bounds for constrained and weighted least squares problems, Linear Algebra Appl. 349, 221232 (2002).
[14]Chu, M. T. and Golub, G. H., Structured inverse eigenvalue problems, Acta. Numer. 11, 171 (2002).
[15]Kahan, W., Parlett, B. N., and Jiang, E. X., Residual bounds on approximate eigensystems of non-normal matrices, SIAM J. Numer. Anal. 19, 470484 (1982).
[16]Wei, M. S., Theory and Computations for Generalized Least Squares Problems, Beijing: Science Press, in Chinese (2006).
[17]Tisseur, F. and Graillat, S., Structured condition numbers and backward errors in scalar product spaces, Electron. J. Linear Algebra., 15, 159177 (2006).
[18]Byrnes, C. I. and Lindquist, A., Algebraic aspects of generalized eigenvalue problems for solving Riccati equations, in Computational and Combinatorial Methods in Systems Theory, pp. 213227 (1986).
[19]Mehrmann, V., A symplectic orthogonal method for single input or single output discrete time optimal linear quadratic control problems, SIAM J. Matrix Anal. Appl. 9, 221248 (1988).
[20]Pappas, T., Laub, A. J., and Sandell, N. R., On the numerical solution of the discrete-time algebraic Riccati equation, IEEE Trans. Auomat. Control. 25, 631641 (1980).
[21]Payne, H. J. and Silverma, L. M., On the discrete time algebraic Riccati equation, IEEE Trans. Auomat. Control. 18, 226234 (1973).
[22]Xu, W., Li, W., Ching, W. and Chen, Y., Backward errors for two kinds of eigenvalue problems, J. Comput. Appl. Math. 235, 5973 (2010).

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed