Skip to main content Accessibility help
×
Home

Radiation Injury After a Nuclear Detonation: Medical Consequences and the Need for Scarce Resources Allocation

  • Andrea L. DiCarlo, Carmen Maher, John L. Hick, Dan Hanfling, Nicholas Dainiak, Nelson Chao, Judith L. Bader, C. Norman Coleman and David M. Weinstock...

Abstract

A 10-kiloton (kT) nuclear detonation within a US city could expose hundreds of thousands of people to radiation. The Scarce Resources for a Nuclear Detonation Project was undertaken to guide community planning and response in the aftermath of a nuclear detonation, when demand will greatly exceed available resources. This article reviews the pertinent literature on radiation injuries from human exposures and animal models to provide a foundation for the triage and management approaches outlined in this special issue. Whole-body doses >2 Gy can produce clinically significant acute radiation syndrome (ARS), which classically involves the hematologic, gastrointestinal, cutaneous, and cardiovascular/central nervous systems. The severity and presentation of ARS are affected by several factors, including radiation dose and dose rate, interindividual variability in radiation response, type of radiation (eg, gamma alone, gamma plus neutrons), partial-body shielding, and possibly age, sex, and certain preexisting medical conditions. The combination of radiation with trauma, burns, or both (ie, combined injury) confers a worse prognosis than the same dose of radiation alone. Supportive care measures, including fluid support, antibiotics, and possibly myeloid cytokines (eg, granulocyte colony-stimulating factor), can improve the prognosis for some irradiated casualties. Finally, expert guidance and surge capacity for casualties with ARS are available from the Radiation Emergency Medical Management Web site and the Radiation Injury Treatment Network.

(Disaster Med Public Health Preparedness. 2011;5:S32-S44)

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Radiation Injury After a Nuclear Detonation: Medical Consequences and the Need for Scarce Resources Allocation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Radiation Injury After a Nuclear Detonation: Medical Consequences and the Need for Scarce Resources Allocation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Radiation Injury After a Nuclear Detonation: Medical Consequences and the Need for Scarce Resources Allocation
      Available formats
      ×

Copyright

Corresponding author

Correspondence: Address correspondence and reprint requests to Dr David Weinstock, Dana-Farber Cancer Institute/Harvard Medical School, 45 Brookline Ave, D510B, Boston, MA 02115 (e-mail: DavidM_Weinstock@dfci.harvard.edu).

References

Hide All
1.Knebel, AR, Coleman, CN, Cliffer, KD.Allocation of scarce resources after a nuclear detonation: setting the context. Disaster Med Public Health Prep. 2011;5(Suppl 1)S20S31.
2.Coleman, CN, Weinstock, DM, Casagrande, R.Triage and treatment tools for use in a scarce resources-crisis standards of care setting after a nuclear detonation. Disaster Med Public Health Prep. 2011;5(Suppl 1)S111S121.
3.Hick, JL, Weinstock, DM, Coleman, CN.Healthcare system planning for and response to a nuclear detonation. Disaster Med Public Health Prep. 2011;5(Suppl 1)S73S88.
4.Murrain-Hill, P, Coleman, CN, Hick, JL.Medical response to a nuclear detonation: creating a playbook for state and local planners and responders. Disaster Med Public Health Prep. 2011;5(Suppl 1)S89S97.
5.Federal Emergency Management Agency, US Department of Homeland Security. FEMA fact sheet: National Planning Scenarios.2009: http://www.fema.gov/pdf/media/factsheets/2009/npd_natl_plan_scenario.pdf. Published 2009. Accessed December 2, 2010.
6.Buddemeier, BR, Dillon, MBKey Response Planning Factors for the Aftermath of a Nuclear Detonation.LLNL-TR-410067. http://www.remm.nlm.gov/IND_ResponsePlanning_LLNL-TR-410067.pdf. Published August 2009. Accessed February 3, 2011.
7.Hall, EAcute effects of total-body irradiation.In: Hall E, ed. Radiobiology for the Radiologist. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2000:124-135.
8.Fliedner, TM, D Dörr, H, Meineke, V.Multi-organ involvement as a pathogenetic principle of the radiation syndromes: a study involving 110 case histories documented in SEARCH and classified as the bases of haematopoietic indicators of effect. BJR Suppl. 2005;27:18.
9.Institute of Medicine. Guidance for Establishing Crisis Standards of Care for Use in Disaster Situations: A Letter Report.Washington, DC: National Academies Press; 2009.
10.Waselenko, JK, MacVittie, TJ, Blakely, WFStrategic National Stockpile Radiation Working Group. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med. 2004;140 (12):10371051.
11.Friesecke, I, Beyrer, K, Fliedner, TM, METREPOL team. How to cope with radiation accidents: the medical management. Br J Radiol. 2001;74 (878):121122.
12.Coleman, CN, Hrdina, C, Bader, JL.Medical response to a radiologic/nuclear event: integrated plan from the Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services. Ann Emerg Med. 2009;53 (2):213222.
13.Dainiak, N, Waselenko, JK, Armitage, JOThe hematologist and radiation casualties.Hemato Am Soc Hematol Educ Progr; 2003:473-496.
14.Fliedner, TM, Chao, NJ, Bader, JL.Stem cells, multiorgan failure in radiation emergency medical preparedness: a U.S./European Consultation Workshop. Stem Cells. 2009;27 (5):12051211.
15.Cerveny, T, MacVittie, T, Young, RAcute radiation syndrome in humans.In: Walker R, Cerveny T, eds. Textbook of Military Medicine: Medical Consequences of Nuclear Warfare. Falls Church, VA: TMM Publications; 1989:17-36.
16.Milyavsky, M, Gan, OI, Trottier, M.A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell. 2010;7 (2):186197.
17.Cheadle, WG, Pemberton, RM, Robinson, D, Livingston, DH, Rodriguez, JL, Polk, HC JrLymphocyte subset responses to trauma and sepsis. J Trauma. 1993;35 (6):844849.
18.Maldonado, MD, Venturoli, A, Franco, A, Nunez-Roldan, A.Specific changes in peripheral blood lymphocyte phenotype from burn patients. Probable origin of the thermal injury-related lymphocytopenia. Burns. 1991;17 (3):188192.
19.Fliedner, TM, Graessle, D, Meineke, V, Dörr, H.Pathophysiological principles underlying the blood cell concentration responses used to assess the severity of effect after accidental whole-body radiation exposure: an essential basis for an evidence-based clinical triage. Exp Hematol. 2007;35 4(Suppl 1)816.
20.Madonna, GS, Ledney, GD, Moore, MM, Elliott, TB, Brook, I.Treatment of mice with sepsis following irradiation and trauma with antibiotics and synthetic trehalose dicorynomycolate (S-TDCM). J Trauma. 1991;31 (3):316325.
21.Demidenko, E, Williams, BB, Swartz, HM.Radiation dose prediction using data on time to emesis in the case of nuclear terrorism. Radiat Res. 2009;171 (3):310319.
22.Anno, GH, Young, RW, Bloom, RM, Mercier, JR.Dose response relationships for acute ionizing-radiation lethality. Health Phys. 2003;84 (5):565575.
23.Haskin, FE, Harper, FT, Goossens, LHJAppendices (NUREG/CR-6545).Vol 2. Washington, DC: Nuclear Regulatory Commission; 1997. Probabilistic Accident Consequence Uncertainty Analysis—Early Health Effects Uncertainty Assessment.
24.Haskin, FE, Harper, FT, Goossens, LHJMain Report (NUREG/CR-6545).Vol 1. Washington, DC: Nuclear Regulatory Commission; 1997. Probabilistic Accident Consequence Uncertainty Analysis—Early Health Effects Uncertainty Assessment.
25.Iijima, S.Pathology of atomic bomb casualties. Acta Pathol Jpn. 1982;32(Suppl 2)237270.
26.Kishi, HS.Effects of the “special bomb”: recollections of a neurosurgeon in Hiroshima, August 8-15, 1945. Neurosurgery. 2000;47 (2):441445, discussion 445-446.
27.United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 1988 Report to the General Assembly, With Annexes. Annex G: Early Effects in Man of High Doses of Radiation.New York: United Nations; 1988.
28.Dainiak, N, Ricks, RC.The evolving role of haematopoietic cell transplantation in radiation injury: potentials and limitations. BJR Suppl. 2005;27:169174.
29.Oak Ridge Institute for Science and Education. Radiation Emergency Center/Training Site Web site. http://orise.orau.gov/reacts. Accessed December 2, 2010.
30.Hirama, T, Tanosaki, S, Kandatsu, S.Initial medical management of patients severely irradiated in the Tokai-mura criticality accident. Br J Radiol. 2003;76 (904):246253.
31.DiCarlo, AL, Hatchett, RJ, Kaminski, JM.Medical countermeasures for radiation combined injury: radiation with burn, blast, trauma and/or sepsis. report of an NIAID Workshop, March 26-27, 2007. Radiat Res. 2008;169 (6):712721.
32.Prasanna, PG, Blakely, WF, Bertho, JM.Synopsis of partial-body radiation diagnostic biomarkers and medical management of radiation injury workshop. Radiat Res. 2010;173 (2):245253.
33.Williams, JP, Brown, SL, Georges, GE.Animal models for medical countermeasures to radiation exposure. Radiat Res. 2010;173 (4):557578.
34.Barbero, AM, Frasch, HF.Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicol In Vitro. 2009;23 (1):113.
35.Hopewell, JW.The skin: its structure and response to ionizing radiation. Int J Radiat Biol. 1990;57 (4):751773.
36.Simon, GA, Maibach, HI.The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations–an overview. Skin Pharmacol Appl Skin Physiol. 2000;13 (5):229234.
37.Ledney, GD, Elliott, TB.Combined injury: factors with potential to impact radiation dose assessments. Health Phys. 2010;98 (2):145152.
38.Jackson, IL, Vujaskovic, Z, Down, JD.Revisiting strain-related differences in radiation sensitivity of the mouse lung: recognizing and avoiding the confounding effects of pleural effusions. Radiat Res. 2010;173 (1):1020.
39.Dukhuongl, E.Distribution of cobalt-60 in the rat as influenced by chelating agents. Nature. 1964;204:696697.
40.Handford, SW, Stonestreet, PJ, Johnson, PW.The acute radiation syndrome in dogs after total-body exposure to a supralethal dose of ionizing radiation Co60LD100/88 hours. Radiat Res. 1960;13:712725.
41.Melo, DR, Lundgren, DL, Muggenburg, BA, Guilmette, RA.Prussian Blue decorporation of 137Cs in beagles of different ages. Health Phys. 1996;71 (2):190197.
42.MacVittie, TJ, Farese, AM, Jackson, W IIIDefining the full therapeutic potential of recombinant growth factors in the post radiation-accident environment: the effect of supportive care plus administration of G-CSF. Health Phys. 2005;89 (5):546555.
43.Lushbaugh, CReflections on some recent progress in human radiobiology.In: Augenstein L, Mason R, Zelle M, eds. Advances in Radiation Biology. Vol 3. New York: Academic Press; 1969:277.
44.Fujita, S, Kato, H, Schull, WJ.The LD50 associated with exposure to the atomic bombing of Hiroshima. J Radiat Res (Tokyo). 1989;30 (4):359381.
45.Levin, SG, Young, RW, Stohler, RL.Estimation of median human lethal radiation dose computed from data on occupants of reinforced concrete structures in Nagasaki, Japan. Health Phys. 1992;63 (5):522531.
46.Laupa, A, Anno, GChernobyl Accident Fatalities and Causes.Washington, DC: Defense Nuclear Agency; 1990.
47.Allen, RG, Brown, FA, Logie, LC, Rovner, DR, Wilson, RW Jr, Zellmer, SG.Acute effects of gamma radiation in primates. Radiat Res. 1960;12:532559.
48.Eldred, E, Trowbridge, WV.Neurological and EEG findings in the monkey after total body x-irradiation. Electroencephalogr Clin Neurophysiol. 1953;5 (2):259270.
49.Haigh, MV, Paterson, E.Effects of a single session of whole body irradiation in the rhesus monkey. Br J Radiol. 1956;29 (339):148157.
50.Henschke, UK, Morton, JL.Mortality of rhesus monkeys after single total body irradiation. Am J Roentgenol Radium Ther Nucl Med. 1957;77 (5):899909.
51.Schlumberger, HG, Vazquez, JJ.Pathology of total body irradiation in the monkey. Am J Pathol. 1954;30 (6):10131047.
52.Dalrymple, GV, Lindsay, IR, Ghidoni, JJ.The effect of 2-MEV whole-body x-irradiation on primates. Radiat Res. 1965;25:377400.
53.Zoetelief, J, Wagemaker, G, Broerse, JJ.Dosimetry for total body irradiation of rhesus monkeys with 300 kV X-rays. Int J Radiat Biol. 1998;74 (2):265272.
54.Broerse, JJ, Van Bekkum, DW, Hollander, CF, Davids, JA.Mortality of monkeys after exposure to fission neutrons and the effect of autologous bone marrow transplantation. Int J Radiat Biol Relat Stud Phys Chem Med. 1978;34 (3):253264.
55.Zellmer, R, Pickering, JBiological Effects of Nuclear Radiation in Primates. (AF-SAM-60-66).Brooks Air Force Base, TX: School of Aviation Medicine, US Aerospace Medical Center; 1960.
56.Stanley, R, Seigneur, L, Strike, TThe Acute Mortality Response of Monkeys (Macacca mulatta) to Mixed Gamma-Neutron Radiations and 250 kVp x Rays. (SR66-23).Bethesda, MD: Armed Forces Radiobiology Research Institute; 1966.
57.Haus, E.Chronobiology of the mammalian response to ionizing radiation. Potential applications in oncology. Chronobiol Int. 2002;19 (1):77100.
58.Kallman, RF.The effect of dose rate on mode of acute radiation death of C57BL and BALB/c mice. Radiat Res. 1962;16:796810.
59.Thomson, JF, Tourtellotte, WW, Carttar, MS, Cox, JE Jr, Wilson, RS.Studies on the effects of continuous exposure of animals to gamma radiation from cobalt 60 plane sources. Am J Roentgenol Radium Ther Nucl Med. 1953;69 (5):830838.
60.Casarett, APModification of radiation injury.In: Casarett AP, ed. Radiation Biology. Englewood Cliffs, NJ: Prentice-Hall; 1968:236-265.
61.Grahn, D.Acute radiation response of mice from a cross between radiosensitive and radioresistant strains. Genetics. 1958;43 (5):835843.
62.Garner, RJ, Phemister, RD, Angleton, GM, Lee, AC, Thomassen, RW.Effect of age on the acute lethal response of the beagle to cobalt-60 gamma radiation. Radiat Res. 1974;58 (2):190195.
63. McLaughlin, MM, Dacquisto, MP, Jacobus, DP, Horowitz, RE.Effects of the germfree state on responses of mice to whole-body irradiation. Radiat Res. 1964;23:333349.
64.Hall, JE, White, WJ, Lang, CM.Acidification of drinking water: its effects on selected biologic phenomena in male mice. Lab Anim Sci. 1980;30 (4 Pt 1):643651.
65.Baranov, AE, Guskova, AK, Nadejina, NM, Nugis VYu, Chernobyl experience: biological indicators of exposure to ionizing radiation. Stem Cells. 1995;13(Suppl 1)6977.
66.Ledney, G, Elliott, T, Moore, MModulations of mortality by tissue trauma and sepsis in mice after radiation injury.In: Mossman KL, Mills WA, eds. The Biological Basis of Radiation Protection Practice. Baltimore: Williams & Wilkins; 1992:202-217.
67.Vorobiev, AI.Acute radiation disease and biological dosimetry in 1993. Stem Cells. 1997;15(Suppl 2)269274.
68.Brooks, JW, Evans, EI, Ham, JD Jr, Reid, WT.The influence of external body radiation on mortality from thermal burns. Ann Surg. 1952;136 (3):533545.
69.Alpen, EL, Sheline, GE.The combined effects of thermal burns and whole body X irradiation on survival time and mortality. Ann Surg. 1954;140 (1):113118.
70.Baxter, H, Drummond, JA, Stephens-Newsham, LG, Randall, RG.Studies on acute total body irradiation in animals. I. Effect of streptomycin following exposure to a thermal burn and irradiation. Plast Reconstr Surg (1946). 1953;12 (6):439445.
71.Korlof, B.Infection of burns. I. A bacteriological and clinical study of 99 cases. II. Animal experiments; burns and total body x-irradiation. Acta Chir Scand Suppl. 1956;209:1144.
72.Mishima, S, Yukioka, T, Matsuda, H, Shimazaki, S.Mild hypotension and body burns synergistically increase bacterial translocation in rats consistent with a “two-hit phenomenon”. J Burn Care Rehabil. 1997;18 (1 Pt 1):2226.
73.Yan, Y, Ran, X, Wei, S.Changes of immune functions after radiation, burns and combined radiation-burn injury in rats. Chin Med Sci J. 1995;10 (2):8589.
74.Whitnall, MH, Elliott, TB, Harding, RAJackson WE3rd. Androstenediol stimulates myelopoiesis and enhances resistance to infection in gamma-irradiated mice. Int J Immunopharmacol. 2000;22 (1):114.
75.Ran, X, Yan, Y, Cheng, T, Lin, Y, Wei, S, Zheng, H.Effects of combined radiation and thermal burn injury on the survival of skin allograft and immune function in rats. Chin Med J (Engl). 1998;111 (7):634637.
76.Furth, FW, Coulter, MP, Miller, RW, Howland, JW, Swisher, SN.The treatment of the acute radiation syndrome in dogs with aureomycin and whole blood. J Lab Clin Med. 1953;41 (6):918928.
77.Jackson, DP, Sorensen, DK, Cronkite, EP, Bond, VP, Fliedner, TM.Effectiveness of transfusions of fresh and lyophilized platelets in controlling bleeding due to thrombocytopenia. J Clin Invest. 1959;38:16891697.
78.Perman, V, Cronkite, EP, Bond, VP, Sorensen, DK.The regenerative ability of hemopoietic tissue following lethal x-irradiation in dogs. Blood. 1962;19:724737.
79.Sorensen, DK, Bond, VP, Cronkite, EP.An effective therapeutic regimen for the hemopoietic phase of the acute radiation syndrome in dogs. Radiat Res. 1960;13:669685.
80.Baranov, A, Gale, RP, Guskova, A.Bone marrow transplantation after the Chernobyl nuclear accident. N Engl J Med. 1989;321 (4):205212.
81.Gourmelon, P, Benderitter, M, Bertho, JM, Huet, C, Gorin, NC, De Revel, P.European consensus on the medical management of acute radiation syndrome and analysis of the radiation accidents in Belgium and Senegal. Health Phys. 2010;98 (6):825832.
82.Ishii, T, Futami, S, Nishida, M.Brief note and evaluation of acute-radiation syndrome and treatment of a Tokai-mura criticality accident patient. J Radiat Res (Tokyo). 2001;42(Suppl)S167S182.
83.Kuderer, NM, Dale, DC, Crawford, J, Lyman, GH.Impact of primary prophylaxis with granulocyte colony-stimulating factor on febrile neutropenia and mortality in adult cancer patients receiving chemotherapy: a systematic review. J Clin Oncol. 2007;25 (21):31583167.
84.Farese, AM, Hunt, P, Grab, LB, MacVittie, TJ.Combined administration of recombinant human megakaryocyte growth and development factor and granulocyte colony-stimulating factor enhances multilineage hematopoietic reconstitution in nonhuman primates after radiation-induced marrow aplasia. J Clin Invest. 1996;97 (9):21452151.
85.Neelis, KJ, Dubbelman, YD, Qingliang, L, Thomas, GR, Eaton, DL, Wagemaker, G.Simultaneous administration of TPO and G-CSF after cytoreductive treatment of rhesus monkeys prevents thrombocytopenia, accelerates platelet and red cell reconstitution, alleviates neutropenia, and promotes the recovery of immature bone marrow cells. Exp Hematol. 1997;25 (10):10841093.
86.Neelis, KJ, Hartong, SC, Egeland, T, Thomas, GR, Eaton, DL, Wagemaker, G.The efficacy of single-dose administration of thrombopoietin with coadministration of either granulocyte/macrophage or granulocyte colony-stimulating factor in myelosuppressed rhesus monkeys. Blood. 1997;90 (7):25652573.
87.Weisdorf, D, Chao, N, Waselenko, JK.Acute radiation injury: contingency planning for triage, supportive care, and transplantation. Biol Blood Marrow Transplant. 2006;12 (6):672682.
88.Bader, JL, Nemhauser, J, Chang, F.Radiation event medical management (REMM): website guidance for health care providers. Prehosp Emerg Care. 2008;12 (1):111.
89.National Library of Medicine, National Institutes of Health. Radiation Emergency Medical Management (REMM) Web site. http://www.remm.nlm.gov. Accessed April 2, 2010.
90.Davids, MS, Case, C Jr, Hornung, R IIIAssessing surge capacity for radiation victims with marrow toxicity. Biol Blood Marrow Transplant. 2010;16 (10):14361441.
91.Weinstock, DM, Case, JL Jr, Bader, C.Radiologic and nuclear events: contingency planning for hematologists/oncologists. Blood. 2008;111 (12):54405445.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed