Skip to main content Accessibility help
×
Home

Evidence-Based Patient Decontamination: An Integral Component of Mass Exposure Chemical Incident Planning and Response

  • Adam D. Leary (a1), Michael D. Schwartz (a2), Mark A. Kirk (a3), Joselito S. Ignacio (a3), Elaine B. Wencil (a1) and Susan M. Cibulsky (a1)...

Abstract

Decontaminating patients who have been exposed to hazardous chemicals can directly benefit the patients’ health by saving lives and reducing the severity of toxicity. While the importance of decontaminating patients to prevent the spread of contamination has long been recognized, its role in improving patient health outcomes has not been as widely appreciated. Acute chemical toxicity may manifest rapidly—often minutes to hours after exposure. Patient decontamination and emergency medical treatment must be initiated as early as possible to terminate further exposure and treat the effects of the dose already absorbed. In a mass exposure chemical incident, responders and receivers are faced with the challenges of determining the type of care that each patient needs (including medical treatment, decontamination, and behavioral health support), providing that care within the effective window of time, and protecting themselves from harm. The US Department of Health and Human Services and Department of Homeland Security have led the development of national planning guidance for mass patient decontamination in a chemical incident to help local communities meet these multiple, time-sensitive health demands. This report summarizes the science on which the guidance is based and the principles that form the core of the updated approach. (Disaster Med Public Health Preparedness. 2014;0:1–7)

Copyright

Corresponding author

Correspondence and reprint requests to Susan M. Cibulsky, PhD, JFK Federal Building, 15 New Sudbury St, Ste 2126, Boston, MA 02203 e-mail susan.cibulsky@hhs.gov.

References

Hide All
1.Shea, DA. RMP Facilities in the United States as of November 2012. Congressional Research Service memorandum. DocumentCloud. http://www.documentcloud.org/documents/557127-crs-rmp-update-11-16-12.html. Accessed February 7, 2014.
2. National Toxic Substance Incidents Program: national estimated data. Agency for Toxic Substances and Disease Registry website. http://www.atsdr.cdc.gov/ntsip/. Accessed September 5, 2013.
3.Broughton, E. The Bhopal disaster and its aftermath: a review. Environ Health. 2005;4:1-6.
4.Wenck, MA, Van Sickle, D, Drociuk, D, etal. Rapid assessment of exposure to chlorine released from a train derailment and resulting health impact. Public Health Rep. 2007;122:784-792.
5.Yanagisawa, N, Morita, H, Nakajima, T. Sarin experiences in Japan: acute toxicity and long-term effects. J Neurol Sci. 2006;249:76-85.
6.Wax, PM. Historical principles and perspectives. In: Nelson LS, Lewin NA, Howland MA, Hoffman RS, Goldfrank LR, Flomenbaum NE, eds. Goldfrank's Toxicologic Emergencies, 9th ed. New York, New York: McGraw Medical; 2011:1-17.
7.Eaton, DL, Gilbert, SG. Principles of toxicology. In: Klaassen CD, ed. Casarett and Doull's Toxicology: The Basic Science of Poisons, 7th ed. New York, New York: McGraw-Hill; 2008:11-43.
8.Reifenrath, WG, Mershon, MM, Brinkley, FB, Miura, GA, Broomfield, CA, Cranford, HB. Evaluation of diethyl malonate as a simulant for 1,2,2-trimethylpropyl methylphosphonofluoridate (soman) in shower decontamination of the skin. J Pharm Sci. 1984;73:1388-1392.
9.Bromberg, BE, Song, IC, Walden, RH. Hydrotherapy of chemical burns. Plast Reconstruct Surg. 1965;35:85-95.
10.Braue, EH Jr, Smith, KH, Doxzon, BF, Lumpkin, HL, Clarkson, ED. Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste against chemical warfare agents, part 1: guinea pigs challenged with VX. Cutan Ocul Toxicol. 2011;30:15-28.
11.Braue, EH Jr, Smith, KH, Doxzon, BF, Lumpkin, HL, Clarkson, ED. Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste against chemical warfare agents, part 2: guinea pigs challenged with soman. Cutan Ocul Toxicol. 2011;30:29-37.
12.Bjarnason, S, Mikler, J, Hill, I, etal. Comparison of selected skin decontaminant products and regimens against VX in domestic swine. Hum Exp Toxicol. 2008;27:253-261.
13.Hamilton, MG, Hill, I, Conley, J, Sawyer, TW, Caneva, DC, Lundy, PM. Clinical aspects of percutaneous poisoning by the chemical warfare agent VX: effects of application site and decontamination. Mil Med. 2004;169:856-862.
14.Taysse, L, Daulon, S, Delamanche, S, Bellier, B, Breton, P. Skin decontamination of mustards and organophosphates: comparative efficiency of RSDL and Fuller's earth in domestic swine. Hum Exp Toxicol. 2007;26:135-141.
15.Monteiro-Riviere, NA, Inman, AO, Jackson, H, Dunn, B, Dimond, S. Efficacy of topical phenol decontamination strategies on severity of acute phenol chemical burns and dermal absorption: in vitro and in vivo studies in pig skin. Toxicol Ind Health. 2001;17:95-104.
16.Leonard, LG, Scheulen, JJ, Munster, AM. Chemical burns: effect of prompt first aid. J Trauma. 1982;22:420-423.
17.Moran, KD, O'Reilly, T, Munster, AM. Chemical burns: a ten-year experience. Am Surg. 1987;53:652-653.
18.Sykes, RA, Mani, MM, Hiebert, JM. Chemical burns: retrospective review. J Burn Care Rehabil. 1986;7:343-347.
19.Preston, RJ, Marcozzi, D, Lima, R, Pietrobon, R, Braga, L, Jacobs, D. The effect of evacuation on the number of victims following hazardous chemical release. Prehosp Emerg Care. 2008;12:18-23.
20.Amlot, R, Larner, J, Matar, H, etal. Comparative analysis of showering protocols for mass-casualty decontamination. Prehosp Disaster Med. 2010;25:435-439.
21.Hood, J, Fernandes-Flack, J, Larranaga, MD. Effectiveness of hospital-based decontamination during a simulated mass casualty exposure. J Occup Environ Hyg. 2011;8:D131-D138.
22.Moffett, PM, Baker, BL, Kang, CS, Johnson, MS. Evaluation of time required for water-only decontamination of an oil-based agent. Mil Med. 2010;175:185-187.
23.Torngren, S, Persson, S-A, Ljungquist, A, etal. Personal decontamination after exposure to simulated liquid phase contaminants: functional assessment of a new unit. J Toxicol Clin Toxicol. 1998;36:567-573.
24.2012 Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) Strategy. US Department of Health and Human Services, Office of the Assistant Secretary for Preparedness and Response website. http://www.phe.gov/Preparedness/mcm/phemce/Documents/2012-PHEMCE-Strategy.pdf. Accessed January 17, 2014.
25.Auf der Heide, E. The importance of evidence-based disaster planning. Ann Emerg Med. 2006;47:34-49.
26.Kirk, MA, Deaton, ML. Bringing order out of chaos: effective strategies for medical response to mass chemical exposure. EmergMed Clin North Am. 2007;25:527-548.
27.Scanlon, J. Chemically contaminated casualties: different problems and possible solutions. Am J DisasterMed. 2010;5:95-105.
28.Okumura, T, Hisaoka, T, Yamada, A. The Tokyo subway sarin attack – lessons learned. Toxicol Appl Pharmacol. 2005;207:S471-S476.
29.Egan, JR, Amlot, R. Modelling mass casualty decontamination systems informed by field exercise data. Int J Environ Res Pub Health. 2012;9:3685-3710.
30.Risher, JF, DeRosa, CT. The precision, uses, and limitations of public health guidance values. Hum Ecol Risk Assess. 1997;3:681-700.
31.Permissible Exposure Limits (PELs). US Department of Labor, Occupational Safety and Health Administration website. https://www.osha.gov/dsg/topics/pel/index.html#solutions. Accessed January 17, 2014.
32.Moody, RP, Maibach, HI. Skin decontamination: importance of the wash-in effect. Food Chem Toxicol. 2006;44:1783-1788.
33.Hick, JL, Penn, P, Hanfling, D, Lappe, MA, O'Laughlin, D, Burstein, JL. Establishing and training health care facility decontamination teams. Ann Emerg Med. 2003;42:381-390.
34.Laurent, JF, Richter, F, Michel, A. Management of victims of urban chemical attack: the French approach. Resuscitation. 1999;42:141-149.
35.Byers, M, Russell, M, Lockey, DJ. Clinical care in the “hot zone”. Emerg Med J. 2008;25:108-112.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed