Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-17T09:05:51.272Z Has data issue: false hasContentIssue false

Cross-Country Discrepancies in Monkeypox Vaccine Hesitancy Among Postgraduate and Undergraduate Medical Students

Published online by Cambridge University Press:  02 May 2024

Mai Hussein*
Affiliation:
Alexandria Clinical Research Administration, Alexandria Health Affairs Directorate, Egypt Ministry of Health and Population, Egypt
Abdelmonem Siddiq
Affiliation:
Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
Horeya M. Ismail
Affiliation:
High Institute of Public Health, Alexandria University, Egypt
Norhan Mansy
Affiliation:
Clinical pharmacy department, New Cairo Hospital, Egypt
Doha El-Sayed Ellakwa
Affiliation:
Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Egypt Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, Egypt
Mohammed Nassif
Affiliation:
Faculty of Medicine, Alexandria University, Egypt
Areej A. Hussein
Affiliation:
Microbiology Department, College of Medicine, University of Diyala, Iraq
Jubran K. Abdullah Alzedaar
Affiliation:
College of Medicine, University of Medical and Applied Sciences, Sanaa, Yemen
Chukwuagoziem A. Iloanusi
Affiliation:
Faculty of Clinical Sciences, University of Uyo, Uyo, Nigeria
Murad O. Omran
Affiliation:
Department of Physiology, Faculty of Medicine, Universiti of Malaya, Kuala Lumpur, Malaysia
Khalil M. Rourou
Affiliation:
University of Medicine and Pharmacy of Iași, Romania
Tarun K. Suvvari
Affiliation:
Rangaraya Medical College, Kakinada, India
Saja Yazbek
Affiliation:
Faculty of Public Health, Lebanese University, Beirut, Lebanon
Ramy M. Ghazy
Affiliation:
Family and Community Medicine Department, Family and Community Medicine Department, College of Medicine, King Khalid University, Abha, Saudi Arabia Tropical Health Department, High Institute of Tropical Health, Alexandria University, Alexandria, Egypt
*
Corresponding author: Mai Hussein; Email: Mai.mk.hussein@gmail.com.

Abstract

Background:

Medical students hold significant importance, as they represent the future of healthcare provision. This study aimed to explore psychological antecedents towards the monkeypox (mpox) vaccines among postgraduate and undergraduate medical students across countries.

Methods:

A cross-sectional survey was conducted among medical students aged 18 years old and above in 7 countries; Egypt, Romania, Malaysia, and Yemen, Iraq, India, and Nigeria. We used social media platforms between September 27 and November 4, 2022. An anonymous online survey using the 5C scale was conducted using snowball and convenience Sampling methods to assess the 5 psychological antecedents of vaccination (i.e., confidence, constraints, complacency, and calculation, as well as collective responsibility).

Results:

A total of 2780 participants were recruited. Participants’ median age was 22 years and 52.1% of them were males. The 5C psychological antecedents of vaccination were as follows: 55% were confident about vaccination, 10% were complacent, 12% experienced constraints, and 41% calculated the risk and benefit. Lastly, 32% were willing to be vaccinated for the prevention of infection transmission to others. The Country was a significant predictor of confidence, complacency, having constraints, and calculation domains (P < 0.001). Having any idea about the mpox vaccine was linked to 1.6 times higher odds of being more confident [OR = 1.58 (95% CI, 1.26–1.98), P < 0.001] Additionally, living in a rural area significantly increased complacency [OR = 1.42 (95% CI, 1.05–1.95), P = 0.024] as well as having anyone die from mpox [OR = 3.3 (95% CI, 1.64–6.68), P < 0.001]. Education level was associated with increased calculation [OR = 2.74 (95% CI, 1.62–4.64), P < 0.001]. Moreover, being single and having no chronic diseases significantly increased the calculation domain [OR = 1.40 (95% CI, 1.06–1.98), P = 0.02] and [OR = 1.54 (95% CI, 1.10–2.16), P = 0.012] respectively. Predictors of collective responsibility were age 31–45 years [OR = 2.89 (95% CI, 1.29–6.48), P = 0.01], being single [OR = 2.76 (95% CI, 1.94 -3.92), P < 0.001], being a graduate [OR = 1.59 (95% CI (1.32–1.92), P < 0.001], having no chronic disease [OR = 2.14 (95% CI, 1.56–2.93), P < 0.001], and not knowing anyone who died from mpox [OR = 2.54 (95% CI, 1.39–4.64), P < 0.001), as well as living in a middle-income country [OR = 0.623, (95% CI, 0.51–0.73), P < 0.001].

Conclusions:

This study underscores the multifaceted nature of psychological antecedents of vaccination, emphasizing the impact of socio-demographic factors, geographic location, and awareness, as well as previous experiences on individual attitudes and collective responsibility towards vaccination.

Type
Original Research
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fine, PEM, Jezek, Z, Grab, B, et al. The transmission potential of monkeypox virus in human populations. Int J Epidemiol. 1988;17(3). doi: 10.1093/ije/17.3.643 CrossRefGoogle ScholarPubMed
Ladnyj, ID, Ziegler, P, Kima, E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull World Health Organ. 1972;46(5):593.Google ScholarPubMed
Sah, R, Mohanty, A, Hada, V, et al. The emergence of Monkeypox: a global health threat. Cureus. 2022;doi: 10.7759/cureus.29304.Google Scholar
World Health Organization (WHO) . Mpox (monkeypox) outbreak 2022 - Global. Accessed June 8, 2023. https://www.who.int/emergencies/situations/monkeypox-oubreak-2022 Google Scholar
Sah, R, Padhi, BK, Siddiq, A, et al. Public Health Emergency of International Concern declared by the World Health Organization for Monkeypox. Global Secur Health Sci Pol. 2022;7(1). doi: 10.1080/23779497.2022.2124185 Google Scholar
Ortiz-Saavedra, B, León-Figueroa, DA, Montes-Madariaga, ES, et al. Antiviral treatment against monkeypox: a scoping review. Trop Med Infect Dis. 2022;7(11). doi: 10.3390/tropicalmed7110369 Google ScholarPubMed
Frey, SE, Wald, A, Edupuganti, S, et al. Comparison of lyophilized versus liquid modified vaccinia Ankara (MVA) formulations and subcutaneous versus intradermal routes of administration in healthy vaccinia-naïve subjects. Vaccine. 2015;33(39). doi: 10.1016/j.vaccine.2015.06.075 CrossRefGoogle ScholarPubMed
Garett, R, Young, SD. Online misinformation and vaccine hesitancy. Transl Behav Med. 2021;11(12). doi: 10.1093/tbm/ibab128 CrossRefGoogle ScholarPubMed
Ghazy, RM, Elrewany, E, Gebreal, A, et al. Systematic review on the efficacy, effectiveness, safety, and immunogenicity of monkeypox vaccine. Vaccines (Basel). 2023;11(11):1708. doi: 10.3390/VACCINES11111708/S1 CrossRefGoogle ScholarPubMed
Larson, HJ, Jarrett, C, Eckersberger, E, et al. Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: a systematic review of published literature, 2007-2012. Vaccine. 2014;32(19). doi: 10.1016/j.vaccine.2014.01.081 CrossRefGoogle ScholarPubMed
Dubé, E, Laberge, C, Guay, M, et al. Vaccine hesitancy: an overview. Hum Vaccin Immunother. 2013;9(8). doi: 10.4161/hv.24657 CrossRefGoogle ScholarPubMed
Domachowske, JB, Suryadevara, M. Practical approaches to vaccine hesitancy issues in the United States 2013. Hum Vaccin Immunother. 2013;9(12). doi: 10.4161/hv.26783 CrossRefGoogle Scholar
Kestenbaum, LA, Feemster, KA. Identifying and addressing vaccine hesitancy. Pediatr Ann. 2015;44(4):e71-e75. doi: 10.3928/00904481-20150410-07 CrossRefGoogle ScholarPubMed
Larson, HJ, Cooper, LZ, Eskola, J, et al. Addressing the vaccine confidence gap. Lancet. 2011;378(9790):526-535. doi: 10.1016/S0140-6736(11)60678-8 CrossRefGoogle ScholarPubMed
Parimi, K, Gilkeson, K, Creamer, BA. COVID-19 vaccine hesitancy: considerations for reluctance and improving vaccine uptake. Hum Vaccin Immunother. 2022;18(5). doi: 10.1080/21645515.2022.2062972 CrossRefGoogle Scholar
Betsch, C, Schmid, P, Heinemeier, D, et al. Beyond confidence: development of a measure assessing the 5C psychological antecedents of vaccination. PLoS One. 2018;13(12):e0208601. doi: 10.1371/JOURNAL.PONE.0208601 CrossRefGoogle ScholarPubMed
Abdou, MS, Kheirallah, KA, Aly, MO, et al. The coronavirus disease 2019 (COVID-19) vaccination psychological antecedent assessment using the Arabic 5C validated tool: an online survey in 13 Arab countries. PLoS One. 2021;16(11):e0260321. doi: 10.1371/JOURNAL.PONE.0260321 CrossRefGoogle ScholarPubMed
Sallam, M, Ghazy, RM, Al-Salahat, K, et al. The role of psychological factors and vaccine conspiracy beliefs in Influenza vaccine hesitancy and uptake among Jordanian healthcare workers during the Covid-19 pandemic. Vaccines (Basel). 2022;10(8):1355. doi: 10.3390/VACCINES10081355 CrossRefGoogle ScholarPubMed
Ghazy, RM, Okeh, DU, Sallam, M, et al. Psychological antecedents of healthcare workers towards monkeypox vaccination in Nigeria. Vaccines (Basel). 2022;10(12):2151. doi: 10.3390/VACCINES10122151 CrossRefGoogle ScholarPubMed
Ghazy, RM, Yazbek, S, Gebreal, A, et al. Monkeypox vaccine acceptance among Ghanaians: a call for action. Vaccines (Basel). 2023;11(2):240. doi: 10.3390/VACCINES11020240 CrossRefGoogle ScholarPubMed
ElHafeez, SA, Elbarazi, I, Shaaban, R, et al. Arabic validation and cross-cultural adaptation of the 5C scale for assessment of COVID-19 vaccines psychological antecedents. PLoS One. 2021;16(8 August). doi: 10.1371/journal.pone.0254595 Google Scholar
Ghazy, RM, Abd ElHafeez, S, Shaaban, R, et al. Determining the cutoff points of the 5C scale for assessment of COVID-19 vaccines psychological antecedents among the Arab population: a multinational study. J Prim Care Community Health. 2021;12. doi: 10.1177/21501327211018568 CrossRefGoogle Scholar
Betsch, C, Bach Habersaat, K, Deshevoi, S, et al. Sample study protocol for adapting and translating the 5C scale to assess the psychological antecedents of vaccination. BMJ Open. 2020;10(3). doi: 10.1136/bmjopen-2019-034869 CrossRefGoogle ScholarPubMed
Meier, BM. Human rights in the world health organization: Views of the director-general Candidates. Health Hum Rights. 2017;19(1):293-298.Google ScholarPubMed
Lucia, VC, Kelekar, A, Afonso, NM. COVID-19 vaccine hesitancy among medical students. J Public Health (United Kingdom). 2021;43(3). doi: 10.1093/pubmed/fdaa230 CrossRefGoogle Scholar
Ghazy, RM, Ibrahim, SA, Taha, SHN, et al. Attitudes of parents towards influenza vaccine in the Eastern Mediterranean Region: A multilevel analysis. Vaccine. 2023;41(36):5253-5264. doi: 10.1016/J.VACCINE.2023.07.005 CrossRefGoogle ScholarPubMed
Elkhadry, SW, Salem, TAEH, Elshabrawy, A, et al. COVID-19 vaccine hesitancy among parents of children with chronic liver diseases. Vaccines (Basel). 2022;10(12):2094. doi: 10.3390/VACCINES10122094 CrossRefGoogle ScholarPubMed
Alshahrani, NZ, Mitra, S, Alkuwaiti, AA, et al. Medical students’ perception regarding the re-emerging monkeypox virus: an institution-based cross-sectional study from Saudi Arabia. Cureus. 2022;14(8). doi: 10.7759/CUREUS.28060 Google ScholarPubMed
Kumar, N, Ahmed, F, Raza, MS, et al. Monkeypox cross-sectional survey of knowledge, attitudes, practices, and willingness to vaccinate among University students in Pakistan. Vaccines (Basel). 2023;11(1). doi: 10.3390/vaccines11010097 Google Scholar
Ajman, F, Alenezi, S, Alhasan, K, et al. Healthcare workers’ worries and Monkeypox vaccine advocacy during the first month of the WHO Monkeypox alert: cross-sectional survey in Saudi Arabia. Vaccines (Basel). 2022;10(9). doi: 10.3390/vaccines10091408 Google ScholarPubMed
Riad, A, Drobov, A, Rozmarinová, J, et al. Monkeypox knowledge and vaccine hesitancy of Czech healthcare workers: a Health Belief Model (HBM)-Based Study. Vaccines (Basel). 2022;10(12). doi: 10.3390/vaccines10122022 Google ScholarPubMed
Riccò, M, Ferraro, P, Camisa, V, et al. When a neglected tropical disease goes global: knowledge, attitudes and practices of Italian physicians towards Monkeypox, preliminary results. Trop Med Infect Dis. 2022;7(7). doi: 10.3390/tropicalmed7070135 Google Scholar
Hong, J, Pan, B, Jiang, HJ, et al. The willingness of Chinese healthcare workers to receive monkeypox vaccine and its independent predictors: a cross-sectional survey. J Med Virol. 2023;95(1). doi: 10.1002/jmv.28294 CrossRefGoogle ScholarPubMed
Sahin, TK, Erul, E, Aksun, MS, et al. Knowledge and attitudes of Turkish physicians towards human Monkeypox disease and related vaccination: a cross-sectional study. Vaccines (Basel). 2023;11(1). doi: 10.3390/vaccines11010019 Google Scholar
Ecarnot, F, Crepaldi, G, Juvin, P, et al. Pharmacy-based interventions to increase vaccine uptake: report of a multidisciplinary stakeholders meeting. BMC Public Health. 2019;19(1):1-6. doi: 10.1186/S12889-019-8044-Y/PEER-REVIEW CrossRefGoogle ScholarPubMed
Al-Sanafi, M, Sallam, M. Psychological determinants of covid-19 vaccine acceptance among healthcare workers in Kuwait: a cross-sectional study using the 5C and vaccine conspiracy beliefs scales. Vaccines (Basel). 2021;9(7). doi: 10.3390/vaccines9070701 Google ScholarPubMed
Sudarmaji, N, Kifli, N, Hermansyah, A, et al. Prevention and treatment of Monkeypox: a systematic review of preclinical studies. Viruses. 2022;14(11). doi: 10.3390/v14112496 CrossRefGoogle ScholarPubMed
Kwon, SL, Ban, S, Shin, J, et al. Monkeypox vaccination in the Republic of Korea: identifying the high-risk target group. J Korean Med Sci. 2022;37(29). doi: 10.3346/jkms.2022.37.e239 CrossRefGoogle ScholarPubMed
World Health Organization (WHO). Multi-country Monkeypox outbreak in non-endemic countries. Published in May, 2022. Accessed January 2023.Google Scholar
Hussein, MF, Elshabrawy, A, Ibrahim, SA, et al. Combining COVID-19 and seasonal influenza vaccines together to increase the acceptance of newly developed vaccines in the Eastern Mediterranean Region: a cross-sectional study. Ann Med. 2023;55(2). doi: 10.1080/07853890.2023.2286339 CrossRefGoogle ScholarPubMed