Skip to main content Accessibility help
×
Home

Evaluation of Real-Time Mortality Surveillance Based on Media Reports

Published online by Cambridge University Press:  29 December 2016

Olaniyi O. Olayinka
Affiliation:
Centers for Disease Control and Prevention, Health Studies Branch, Atlanta, Georgia
Tesfaye M. Bayleyegn
Affiliation:
Centers for Disease Control and Prevention, Health Studies Branch, Atlanta, Georgia
Rebecca S. Noe
Affiliation:
Centers for Disease Control and Prevention, Health Studies Branch, Atlanta, Georgia
Lauren S. Lewis
Affiliation:
Centers for Disease Control and Prevention, Health Studies Branch, Atlanta, Georgia
Vincent Arrisi
Affiliation:
New Jersey Department of Health, Office of Vital Statistics and Registry, Trenton, New Jersey
Amy F. Wolkin
Affiliation:
Centers for Disease Control and Prevention, Health Studies Branch, Atlanta, Georgia
Corresponding
E-mail address:

Abstract

Objective

We evaluated the usefulness and accuracy of media-reported data for active disaster-related mortality surveillance.

Methods

From October 29 through November 5, 2012, epidemiologists from the Centers for Disease Control and Prevention (CDC) tracked online media reports for Hurricane Sandy–related deaths by use of a keyword search. To evaluate the media-reported data, vital statistics records of Sandy-related deaths were compared to corresponding media-reported deaths and assessed for percentage match. Sensitivity, positive predictive value (PPV), and timeliness of the media reports for detecting Sandy-related deaths were calculated.

Results

Ninety-nine media-reported deaths were identified and compared with the 90 vital statistics death records sent to the CDC by New York City (NYC) and the 5 states that agreed to participate in this study. Seventy-five (76%) of the media reports matched with vital statistics records. Only NYC was able to actively track Sandy-related deaths during the event. Moderate sensitivity (83%) and PPV (83%) were calculated for the matching media-reported deaths for NYC.

Conclusions

During Hurricane Sandy, the media-reported information was moderately sensitive, and percentage match with vital statistics records was also moderate. The results indicate that online media-reported deaths can be useful as a supplemental source of information for situational awareness and immediate public health decision-making during the initial response stage of a disaster. (Disaster Med Public Health Preparedness. 2017;11:460–466)

Type
Original Research
Copyright
Copyright © Society for Disaster Medicine and Public Health, Inc. 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Glossary of NHC terms. National Hurricane Center. National Oceanic and Atmospheric Administration website. http://www.nhc.noaa.gov/aboutgloss.shtml. Accessed July 9, 2014.Google Scholar
2. Goldman, A, Eggen, B, Golding, B, et al. The health impacts of windstorms: a systematic literature review. Public Health. 2014;128(1):3-28. http://dx.doi.org/10.1016/j.puhe.2013.09.022.CrossRefGoogle ScholarPubMed
3. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature. 2005;436(7051):686-688. http://dx.doi.org/10.1038/nature03906.CrossRefGoogle ScholarPubMed
4. Webster, PJ, Holland, GJ, Curry, JA, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science. 2005;309(5742):1844-1846. http://dx.doi.org/10.1126/science.1116448.CrossRefGoogle Scholar
5. Reducing Disaster Risk: A Challenge for Development. United Nations Development Programme, Bureau for Crisis Prevention and Recovery. http://www.preventionweb.net/files/1096_rdrenglish.pdf. Published 2004. Accessed September 17, 2015.Google Scholar
6. Brunkard, J, Namulanda, G, Ratard, R. Hurricane Katrina deaths, Louisiana, 2005. Disaster Med Public Health Prep. 2008;2(4):215-223. http://dx.doi.org/10.1097/DMP.0b013e31818aaf55.CrossRefGoogle ScholarPubMed
7. Morton, M, Levy, JL. Challenges in disaster data collection during recent disasters. Prehosp Disaster Med. 2011;26(3):196-201. http://dx.doi.org/10.1017/S1049023X11006339.CrossRefGoogle ScholarPubMed
8. Simms, E, Miller, K, Stanbury, M, et al, Disaster surveillance capacity in the United States: results from a 2012 CSTE assessment. Council of State and Territorial Epidemiologists website. http://c.ymcdn.com/sites/www.cste.org/resource/resmgr/EnvironmentalHealth/Disaster_Epi_Baseline731KM.pdf. Version July 29, 2013. Accessed October 23, 2014.Google Scholar
9. More, Better, Faster. Strategies for improving the timeliness of vital statistics. The National Association for Public Health Statistics and Information Systems website. http://www.naphsis.org/Documents/NAPHSIS_Timeliness%20Report_Digital%20(1).pdf. Published April 2013. Accessed June 24, 2014.Google Scholar
10. Choudhary, E, Zane, DF, Beasley, C, et al. Evaluation of active mortality surveillance system data for monitoring hurricane-related deaths—Texas, 2008. Prehosp Disaster Med. 2012;27(4):392-397. http://dx.doi.org/10.1017/S1049023X12000957.CrossRefGoogle ScholarPubMed
11. Chen, R, Sharman, R, Rao, HR, et al. Coordination in emergency response management. Commun ACM. 2008;51(5):66-73. http://dx.doi.org/10.1145/1342327.1342340.CrossRefGoogle Scholar
12. Kapucu, N. Interorganizational coordination in dynamic context: networks in emergency response management. Connections. 2005;26(2):33-48.Google Scholar
13. Hurricane Sandy: A Timeline. Federal Emergency Management Agency (FEMA) website. https://www.fema.gov/media-library/assets/documents/31987. Last updated April 25, 2013. Accessed June 24, 2014.Google Scholar
14. Wang, HV, Loftis, JD, Liu, Z, et al. The storm surge and sub-grid inundation modeling in New York City during Hurricane Sandy. J Mar Sci Eng. 2014;2(1):226-246. http://dx.doi.org/10.3390/jmse2010226.CrossRefGoogle Scholar
15. Subaiya, S, Moussavi, C, Velasquez, A, et al. Rapid needs assessment of the Rockaway Peninsula in New York City after Hurricane Sandy and the relationship of socioeconomic status to recovery. Am J Public Health. 2014;104(4):632-638. http://dx.doi.org/10.2105/AJPH.2013.301668.CrossRefGoogle Scholar
16. Ben-Ezra, M, Palgi, Y, Rubin, GJ, et al. The association between self-reported change in vote for the presidential election of 2012 and posttraumatic stress disorder symptoms following Hurricane Sandy. Psychiatry Res. 2013;210(3):1304-1306. http://dx.doi.org/10.1016/j.psychres.2013.08.055.CrossRefGoogle ScholarPubMed
17. Centers for Disease Control and Prevention. Deaths associated with Hurricane Sandy—October–November 2012. MMWR Morb Mortal Wkly Rep. 2013;62(20):393-397.Google ScholarPubMed
18. Centers for Disease Control and Prevention. Updated guidelines for evaluating public health surveillance systems: recommendations from the Guidelines Working Group. MMWR Recomm Rep. 2001;50(RR-13):1-35.Google Scholar
19. Waeckerle, JF. Disaster planning and response. N Engl J Med. 1991;324(12):815-821. http://dx.doi.org/10.1056/NEJM199103213241206.Google Scholar
20. Brownstein, JS, Freifeld, CC, Chan, EH, et al. Information technology and global surveillance of cases of 2009 H1N1 influenza. N Engl J Med. 2010;362(18):1731-1735. http://dx.doi.org/10.1056/NEJMsr1002707.CrossRefGoogle Scholar
21. Boak, MB, M’ikanatha, NM, Day, RS, et al. Internet death notices as a novel source of mortality surveillance data. Am J Epidemiol. 2008;167(5):532-539. http://dx.doi.org/10.1093/aje/kwm331.CrossRefGoogle ScholarPubMed
22. Checchi, F, Roberts, L. Documenting mortality in crises: what keeps us from doing better? PLoS Med. 2008;5(7):e146. http://dx.doi.org/10.1371/journal.pmed.0050146.CrossRefGoogle ScholarPubMed
23. Harrison, C, Jorder, M, Stern, H, et al. Using online reviews by restaurant patrons to identify unreported cases of foodborne illness—New York City, 2012–2013. MMWR Morb Mortal Wkly Rep. 2014;63(20):441-445.Google ScholarPubMed
24. HealthMap. HealthMap website. http://healthmap.org/en. Accessed July 31, 2014.Google Scholar
25. Carneiro, HA, Mylonakis, E. Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin Infect Dis. 2009;49(10):1557-1564. http://dx.doi.org/10.1086/630200.CrossRefGoogle ScholarPubMed
26. Superstorm Sandy memorial site. Legacy.com website. http://www.legacy.com/memorial-sites/superstorm-sandy/profile-search.aspx?beginswith=All. Accessed July 31, 2014.Google Scholar
28. Mapping Hurricane Sandy’s deadly toll. New York Times website. http://www.nytimes.com/interactive/2012/11/17/nyregion/hurricane-sandy-map.html?_r=2&. Published November 17, 2012. Accessed July 31, 2014.Google Scholar
29. Howland, R, Li, W, Madsen, A, et al. Real-time mortality surveillance during and after Hurricane Sandy in New York City: methods and lessons learned. 141st APHA Annual Meeting. American Public Health Association website. https://apha.confex.com/apha/141am/webprogramadapt/Paper284657.html. Published November 5, 2013. Accessed July 31, 2014.Google Scholar
31. Stephens, KU, Grew, D, Chin, K, et al. Excess mortality in the aftermath of Hurricane Katrina: a preliminary report. Disaster Med Public Health Prep. 2007;1(1):15-20. http://dx.doi.org/10.1097/DMP.0b013e3180691856.CrossRefGoogle ScholarPubMed
32. Medical Examiners’ and Coroners’ Handbook on Death Registration and Fetal Death Reporting. 2003 Revision; Centers for Disease Control and Prevention, National Center for Health Statistics website. http://www.cdc.gov/nchs/data/misc/hb_me.pdf. Published 2003. Accessed August 27, 2014.Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 11
Total number of PDF views: 124 *
View data table for this chart

* Views captured on Cambridge Core between 29th December 2016 - 27th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-wphb9 Total loading time: 0.295 Render date: 2021-01-27T05:28:43.657Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Evaluation of Real-Time Mortality Surveillance Based on Media Reports
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Evaluation of Real-Time Mortality Surveillance Based on Media Reports
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Evaluation of Real-Time Mortality Surveillance Based on Media Reports
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *