[1]Balog, A., On additive representation of integers, Acta Math. Hungar. 54 (1989), 297–301.
[2]Blomer, V., Uniform bounds for Fourier coefficients of theta-series with arithmetic applications, Acta Arith. 114 (2004), 1–21.
[3]Blomer, V., Ternary quadratic forms, and sums of three squares with restricted variables, in The anatomy of integers, CRM Proceedings and Lecture Notes, vol. 46 eds A. Granville, F. Luca and J.-M. de Koninck (American Mathematical Society, Providence, RI, 2008), 1–17.
[4]Brüdern, J. and Fouvry, E., Lagrange’s four squares theorem with almost prime variables, J. Reine Angew. Math. 454 (1994), 59–96.
[5]Chen, J. R., On the representation of a large even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157–176.
[6]Estermann, T., On the sign of the Gaussian sum, J. Lond. Math. Soc. 20 (1945), 66–67.
[7]Fouvry, E. and Tenenbaum, G., Entiers sans grand facteur premier en progressions arithmétiques, Proc. Lond. Math. Soc. (3) 63 (1991), 449–494.
[8]Friedlander, J. and Lagarias, J. C., On the distribution in short intervals of integers having no large prime factor, J. Number Theory 25 (1987), 249–273.
[9]Hall, R. R. and Tenenbaum, G., Divisors, Cambridge Tracts in Mathematics, vol. 90 (Cambridge University Press, Cambridge, 1988).
[10]Harcos, G., On sums of four smooth squares, J. Number Theory 77 (1999), 145–154.
[11]Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers, fifth edition (Oxford University Press, New York, 1979).
[12]Heath-Brown, D. R. and Tolev, D. I., Lagrange’s four squares theorem with one prime and three almost-prime variables, J. Reine Angew. Math. 558 (2003), 159–224.
[13]Hooley, C., On the representation of a number as the sum of two squares and a prime, Acta Math. 97 (1957), 189–210.
[14]Hooley, C., On the Barban–Davenport–Halberstam theorem. III, J. Lond. Math. Soc. (2) 10 (1975), 249–256.
[15]Hooley, C., On a new technique and its applications to the theory of numbers, Proc. Lond. Math. Soc. (3) 38 (1979), 115–151.
[16]Hooley, C., On the Barban–Davenport–Halberstam theorem. X, Hardy-Ramanujan J. 21 (1998), 9 (electronic).
[17]Kovalchik, F. B., Analogues of the Hardy–Littlewood equation, in Integral lattices and finite linear groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 116 (1982), 86–95, 163 (In Russian).
[18]Neumann, S., Mean square value theorems for integers without large prime factors, PhD thesis, Universität Stuttgart (2006).
[19]O’Meara, O. T., Introduction to quadratic forms (Springer, Berlin, 1973).
[20]Plaksin, V. A., Asymptotic formula for the number of solutions of an equation with primes, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 321–397, 463 (In Russian).
[21]Plaksin, V. A., Asymptotic formula for the number of representations of a natural number by a pair of quadratic forms, the arguments of one of which are primes, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 1245–1265 (In Russian).
[22]Shields, P., Some applications of sieve methods in number theory, PhD thesis, University College, Cardiff (1979).
[23]Shiu, P., A Brun–Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math. 313 (1980), 161–170.
[24]Siegel, C. L., Über die analytische Theorie quadratischer Formen I, Ann. of Math. (2) 36 (1935), 527–606.
[25]Smith, R. A., The circle problem in an arithmetic progression, Canad. Math. Bull. 11 (1968), 175–184.
[26]Tenenbaum, G., Sur la probabilité qu’un entier possède un diviseur dans un intervalle donné, Compositio Math. 51 (1984), 243–263.
[27]Tenenbaum, G., Introduction to analytic and probabilistic number theory (Cambridge University Press, Cambridge, 1995).
[28]Tolev, D., Lagrange’s four squares theorem with variables of special type, in Proc. of the session in analytic number theory and diophantine equations, Bonner Mathematische Schriften, vol. 360, eds D. R. Heath-Brown and B. Z. Moroz (Universität Bonn, 2003), 17 pp.
[29]Vaughan, R. C., On a variance associated with the distribution of general sequences in arithmetic progressions. I, II, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 356 (1998), 781–791,
793–809.
[30]Vaughan, R. C. and Wooley, T. D., Waring’s problem: a survey, in Number theory for the millennium, III, Urbana, IL, 21–26 May 2000, eds M. A. Bennett, B. C. Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand and W. Philipp (A K Peters, Natick, MA, 2002), 301–340.
[31]T. D., Wooley, Slim exceptional sets for sums of four squares, Proc. Lond. Math. Soc. (3) 85 (2002), 1–21.