Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T22:50:33.876Z Has data issue: false hasContentIssue false

Some complements to the Lazard isomorphism

Published online by Cambridge University Press:  22 June 2010

Annette Huber
Affiliation:
Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany (email: annette.huber@math.uni-freiburg.de)
Guido Kings
Affiliation:
Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany (email: guido.kings@mathematik.uni-regensburg.de)
Niko Naumann
Affiliation:
Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany (email: niko.naumann@mathematik.uni-regensburg.de)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lazard showed in his seminal work (Groupes analytiques p-adiques, Publ. Math. Inst. Hautes Études Sci. 26 (1965), 389–603) that for rational coefficients, continuous group cohomology of p-adic Lie groups is isomorphic to Lie algebra cohomology. We refine this result in two directions: first, we extend Lazard’s isomorphism to integral coefficients under certain conditions; and second, we show that for algebraic groups over finite extensions K/ℚp, his isomorphism can be generalized to K-analytic cochains andK-Lie algebra cohomology.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

[1]Bosch, S., Güntzer, U. and Remmert, R., Non-Archimedean analysis: a systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften, vol. 261 (Springer, Berlin, 1984).CrossRefGoogle Scholar
[2]Bosch, S., Lütkebohmert, W. and Raynaud, R., Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 21 (Springer, Berlin, 1990).CrossRefGoogle Scholar
[3]Casselman, W. and Wigner, D., Continuous cohomology and a conjecture of Serre’s, Invent. Math. 25 (1974), 199211.CrossRefGoogle Scholar
[4]Dixon, J. D., du Sautoy, M. P. F., Mann, A. and Segal, D., Analytic pro-p groups, London Mathematical Society Lecture Note Series, vol. 157 (Cambridge University Press, Cambridge, 1991).Google Scholar
[5]Henn, H.-W., On finite resolutions of K(n)-local spheres, in Elliptic cohomology, London Mathematical Society Lecture Note Series, vol. 342 (Cambridge University Press, Cambridge, 2007), 122169.CrossRefGoogle Scholar
[6]Huber, A. and Kings, G., A p-adic analogue of the Borel regulator and the Bloch–Kato exponential map, Preprint (2006), arXiv:math/0612611v1, J. Inst. Math. Jussieu, to appear.Google Scholar
[7]Lazard, M., Groupes analytiques p-adiques, Publ. Math. Inst. Hautes Études Sci. 26 (1965), 389603.Google Scholar
[8]Ravenel, D., Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121 (Academic Press, Orlando, FL, 1986).Google Scholar
[9]Schneider, P. and Teitelbaum, J., Algebras of p-adic distributions and admissible representations, Invent. Math. 153 (2003), 145196.CrossRefGoogle Scholar
[10]Serre, J.-P., Groupes analytiques p-adiques, d’après Michel Lazard, Séminaire Nicolas Bourbaki, no. 270 (1963–64).Google Scholar
[11]Serre, J.-P., Lie algebras and Lie groups (W. A. Benjamin, New York, 1965), 1964 lectures given at Harvard University.Google Scholar
[12]Totaro, B., Euler characteristics for p-adic Lie groups, Publ. Math. Inst. Hautes Études Sci. 90 (1999), 169225.CrossRefGoogle Scholar