Skip to main content Accessibility help
×
Home

Slodowy slices and universal Poisson deformations

  • M. Lehn (a1), Y. Namikawa (a2) and Ch. Sorger (a3)

Abstract

We classify the nilpotent orbits in a simple Lie algebra for which the restriction of the adjoint quotient map to a Slodowy slice is the universal Poisson deformation of its central fibre. This generalises work of Brieskorn and Slodowy on subregular orbits. In particular, we find in this way new singular symplectic hypersurfaces of dimension four and six.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Slodowy slices and universal Poisson deformations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Slodowy slices and universal Poisson deformations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Slodowy slices and universal Poisson deformations
      Available formats
      ×

Copyright

References

Hide All
[BC76]Bala, P. and Carter, R. W., Classes of unipotent elements in simple algebraic groups, Math. Proc. Cambridge Philos. Soc. 79 (1976), 401425 and 80 (1976), 1–17.
[Bea00]Beauville, A., Symplectic singularities, Invent. Math. 139 (2000), 541549.
[Bou81]Bourbaki, N., Groupes et Algèbres de Lie (Masson, Paris, 1981).
[BMO11]Braverman, A., Maulik, D. and Okounkov, A., Quantum cohomology of the Springer resolution, Adv. Math. 227 (2011), 421458.
[Bri71]Brieskorn, E., Singular elements of semisimple algebraic groups, in Actes Congrès Intern. Math., Nice, 1970 (Gauthier Villars, Paris, 1971), vol. 2, 279284.
[CM93]Collingwood, D. H. and McGovern, W. M., Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series (Van Nostrand Reinhold, New York, NY, 1993).
[CLP88]De Concini, C., Lusztig, G. and Procesi, C., Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), 1534.
[FH91]Fulton, W. and Harris, J., Representation theory, Graduate Texts in Mathematics, vol. 129 (Springer, Berlin, 1991).
[GG02]Gan, W. L. and Ginzburg, V., Quantization of slodowy slices, Int. Math. Res. Not. IMRN (2002), 243255.
[GK04]Ginzburg, V. and Kaledin, D., Poisson deformations of symplectic quotient singularities, Adv. Math. 186 (2004), 157.
[GPS01]Greuel, G.-M., Pfister, G. and Schönemann, H., Singular 3-0-4, A computer algebra system for polynomial computations, Centre for Computer Algebra, University of Kaiserslautern (2001), http://www.singular.uni-kl.de.
[Gro68]Grothendieck, A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, in Séminaire de Géométrie Algébrique du Bois-Marie 1962 (SGA 2) (North-Holland, Amsterdam, 1968).
[HL91]Hamm, H. and , D. T., Rectified homotopical depth and Grothendieck conjectures, in Grothendieck Festschrift II, ed. Cartier, P. (Birkhäuser, Basel, 1991), 311351.
[Kos63]Kostant, B., Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327404.
[KP82]Kraft, H. and Procesi, C., On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), 539602.
[Nam08a]Namikawa, Y., Birational geometry and deformations of nilpotent orbits, Duke Math. J. 143 (2008), 375405.
[Nam08b]Namikawa, Y., Flops and Poisson deformations of symplectic varieties, Publ. Res. Inst. Math. Sci. 44 (2008), 259314.
[Nam10]Namikawa, Y., Poisson deformations of affine symplectic varieties II, Kyoto J. Math. 50 (2010), 727752.
[Nam11]Namikawa, Y., Poisson deformations of affine symplectic varieties, Duke Math. J. 156 (2011), 5185.
[Pre02]Premet, A., Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), 155.
[Slo80a]Slodowy, P., Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, vol. 815 (Springer, New York, 1980).
[Slo80b]Slodowy, P., Four lectures on simple groups and singularities, Communications of the Mathematical Institute (Mathematical Institute, Rijksuniversiteit Utrecht 11, Utrecht, 1980).
[Spa82]Spaltenstein, N., Classes unipotentes et Sous-Groupes de Borel, Lecture Notes in Mathematics, vol. 946 (Springer, New York, 1982).
[Wei83]Weinstein, A., The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), 523557.
[Yam95]Yamada, H., Lie group theoretical construction of period mapping, Math. Z. 220 (1995), 231255.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed