Skip to main content Accessibility help
×
Home

Primes with an average sum of digits

Published online by Cambridge University Press:  01 March 2009


Michael Drmota
Affiliation:
Institute of Discrete Mathematics and Geometry, Technische Universität Wien, Wiedner Hauptstraße 8-10/104, A-1040 Wien, Austria (email: michael.drmota@tuwien.ac.at)
Christian Mauduit
Affiliation:
Institut de Mathématiques de Luminy, CNRS UMR 6206, Université de la Méditerranée, Campus de Luminy, Case 907, 13288 Marseille Cedex 9, France (email: mauduit@iml.univ-mrs.fr)
Joël Rivat
Affiliation:
Institut de Mathématiques de Luminy, CNRS UMR 6206, Université de la Méditerranée, Campus de Luminy, Case 907, 13288 Marseille Cedex 9, France (email: rivat@iml.univ-mrs.fr)

Abstract

The main goal of this paper is to provide asymptotic expansions for the numbers #{px:p prime,sq(p)=k} for k close to ((q−1)/2)log qx, where sq(n) denotes the q-ary sum-of-digits function. The proof is based on a thorough analysis of exponential sums of the form (where the sum is restricted to p prime), for which we have to extend a recent result by the second two authors.


Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2009

References

[1]Bassily, N. L. and Kátai, I., Distribution of the values of q-additive functions on polynomial sequences, Acta Math. Hung. 68 (1995), 353361.CrossRefGoogle Scholar
[2]Bassily, N. L. and Kátai, I., Distribution of consecutive digits in the q-ary expansion of some subsequences of integers, J. Math. Sci. 78 (1996), 1117.CrossRefGoogle Scholar
[3]Copeland, A. H. and Erdős, P., Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946), 857860.CrossRefGoogle Scholar
[4]Coquet, J., Power sums of digital sums, J. Number Theory 22 (1986), 161176.CrossRefGoogle Scholar
[5]Delange, H., Sur la fonction sommatoire de la fonction “Somme de Chiffres”, Enseignement Math. 21 (1975), 3177.Google Scholar
[6]Drmota, M. and Rivat, J., The sum-of-digits function of squares, J. London Math. Soc. (2) 72 (2005), 273292.CrossRefGoogle Scholar
[7]Fouvry, E. and Mauduit, C., Sur les entiers dont la somme des chiffres est moyenne, J. Number Theory 114 (2005), 135152.CrossRefGoogle Scholar
[8]Grabner, P. J., Kirschenhofer, P., Prodinger, H. and Tichy, R. F., On the moments of the sum-of-digits function, in Applications of Fibonacci numbers, vol. 5 (St. Andrews, 1992). (Kluwer Academic Publishers, Dordrecht, 1993), 263271.CrossRefGoogle Scholar
[9]Graham, S. and Kolesnik, G., Van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series, vol. 126 (Cambridge University Press, Cambridge, 1991).CrossRefGoogle Scholar
[10]Heath-Brown, D. R., Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math. 34 (1982), 13651377.CrossRefGoogle Scholar
[11]Hoheisel, G., Primzahlprobleme in der analysis, Sitz. Preuss. Akad. Wiss. 33 (1930), 311.Google Scholar
[12]Iwaniec, H. and Kowalski, E., Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53 (American Mathematical Society, Providence, RI, 2004).CrossRefGoogle Scholar
[13]Katai, I., On the sum of digits of prime numbers, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967), 8993.Google Scholar
[14]Katai, I., On the sum of digits of primes, Acta Math. Acad. Sci. Hungar. 30 (1977), 169173.CrossRefGoogle Scholar
[15]Katai, I., Distribution of digits of primes in q-ary canonical form, Acta Math. Acad. Sci. Hungar. 47 (1986), 341359.CrossRefGoogle Scholar
[16]Katai, I. and Mogyorodi, J., On the distribution of digits, Publ. Math. Debrecen 15 (1968), 5768.Google Scholar
[17]Mauduit, C. and Rivat, J., Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. Math., to appear.Google Scholar
[18]Mauduit, C. and Rivat, J., La somme des chiffres des carrés, Acta Math., to appear.Google Scholar
[19]Mauduit, C. and Sárközy, A., On the arithmetic structure of the integers whose sum of digits is fixed, Acta Arith. 81 (1997), 145173.CrossRefGoogle Scholar
[20]Shiokawa, I., On the sum of digits of prime numbers, Proc. Japan Acad. 50 (1974), 551554.CrossRefGoogle Scholar
[21]Stolarsky, K. B., Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math. 32 (1977), 717730.CrossRefGoogle Scholar
[22]Vaughan, R. C., An elementary method in prime number theory, Acta Arith. 37 (1980), 111115.CrossRefGoogle Scholar
[23]Vinogradov, I. M., The method of trigonometrical sums in the theory of numbers (Interscience, London, 1954), translated from the Russian, revised and annotated by K .F. Roth and A. Davenport.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 177 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 1st December 2020. This data will be updated every 24 hours.

Access
Hostname: page-component-6d4bddd689-w4gz7 Total loading time: 5.278 Render date: 2020-12-01T15:26:36.037Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Dec 01 2020 14:57:00 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Primes with an average sum of digits
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Primes with an average sum of digits
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Primes with an average sum of digits
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *