Skip to main content Accessibility help
×
Home

Poitou–Tate duality for arithmetic schemes

  • Thomas H. Geisser (a1) and Alexander Schmidt (a2)

Abstract

We give a generalization of Poitou–Tate duality to schemes of finite type over rings of integers of global fields.

Copyright

References

Hide All
[Blo86] Bloch, S., Algebraic cycles and higher K-theory , Adv. Math. 61 (1986), 267304.
[EGA4] Grothendieck, A. and Dieudonné, J., Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas , Publ. Math. Inst. Hautes Études Sci. 20 (1964), 24 (1965), 28 (1966), 32 (1967).
[Fuj00] Fujiwara, K., A proof of the absolute purity conjecture (after Gabber) , in Algebraic geometry 2000, Azumino, Advanced Studies in Pure Mathematics, vol. 36 (Mathematical Society of Japan, Tokyo, 2002), 153183.
[GL01] Geisser, T., Levine, The Bloch–Kato conjecture and a theorem of Suslin–Voevodsky , J. Reine Angew. Math. 530 (2001), 55103.
[Gei10] Geisser, T., Duality via cycle complexes , Ann. of Math. (2) 172 (2010), 10951126.
[Lev99] Levine, M., $K$ -theory and motivic cohomology of schemes, Preprint (1999), http://www.math.uiuc.edu/K-theory/0336/.
[Maz73] Mazur, B., Notes on étale cohomology of number fields , Ann. Sci. Éc. Norm. Supér. (4) 6 (1973), 521552; (1974).
[Mil80] Milne, J. S., Etale cohomology, Princeton Mathematical Series, vol. 33 (Princeton University Press, Princeton, NJ, 1980).
[Mil86] Milne, J. S., Arithmetic duality theorems, second edition (BookSurge, LLC, Charleston, SC, 2006).
[NSW08] Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of number fields, Grundlehren der mathematischen Wissenschaften, vol. 323, second edition (Springer, Berlin, 2008).
[Sai89] Saito, S., A global duality theorem for varieties over global fields , in Algebraic K-theory: connections with geometry and topology (Springer, 1989), 425444.
[Sch07] Schmidt, A., Singular homology of arithmetic schemes , Algebra Number Theory 1 (2007), 183222.
[SGA4] Artin, M., Grothendieck, A. and Verdier, J. L., Séminaire de Géométrie Algébrique du Bois-Marie – Théorie des topos et cohomologie étale des schémas (SGA 4), Lecture Notes in Mathematics vols 269, 270 and 305 (Springer, 1972/3).
[SGA4½] Deligne, P., Théorème de finitude en cohomologie l-adic , in Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie (SGA 4½), avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier, Lecture Notes in Mathematics 569 (Springer, Berlin–New York, 1977).
[Sta17] The Stacks Project Authors, Stacks Project (2017), http://stacks.math.columbia.edu.
[Zin78] Zink, T., Etale cohomology and duality in number fields , in Appendix 2 to K. Haberland: Galois cohomology of algebraic number fields (Dt. Verlag der Wissenschaften, Berlin, 1978).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Poitou–Tate duality for arithmetic schemes

  • Thomas H. Geisser (a1) and Alexander Schmidt (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed