Skip to main content Accessibility help
×
Home

On the Eisenstein ideal for imaginary quadratic fields

  • Tobias Berger (a1)

Abstract

For certain algebraic Hecke characters χ of an imaginary quadratic field F we define an Eisenstein ideal in a p-adic Hecke algebra acting on cuspidal automorphic forms of GL2/F. By finding congruences between Eisenstein cohomology classes (in the sense of G. Harder) and cuspidal classes we prove a lower bound for the index of the Eisenstein ideal in the Hecke algebra in terms of the special L-value L(0,χ). We further prove that its index is bounded from above by the p-valuation of the order of the Selmer group of the p-adic Galois character associated to χ−1. This uses the work of R. Taylor et al. on attaching Galois representations to cuspforms of GL2/F. Together these results imply a lower bound for the size of the Selmer group in terms of L(0,χ), coinciding with the value given by the Bloch–Kato conjecture.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On the Eisenstein ideal for imaginary quadratic fields
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On the Eisenstein ideal for imaginary quadratic fields
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On the Eisenstein ideal for imaginary quadratic fields
      Available formats
      ×

Copyright

References

Hide All
[1]Agboola, A. and Howard, B., Anticyclotomic Iwasawa theory of CM elliptic curves, Ann. Inst. Fourier (Grenoble) 56 (2006), 10011048.
[2]Ash, A. and Stevens, G., Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues, J. Reine Angew. Math. 365 (1986), 192220.
[3]Bellaïche, J. and Chenevier, G., Formes non tempérées pour U(3) et conjectures de Bloch-Kato, Ann. Sci. École Norm. Sup. (4) 37 (2004), 611662.
[4]Berger, T., An Eisenstein ideal for imaginary quadratic fields, PhD thesis, University of Michigan, Ann Arbor, 2005.
[5]Berger, T., Denominators of Eisenstein cohomology classes for GL2 over imaginary quadratic fields, Manuscripta Math. 125 (2008), 427470.
[6]Berger, T. and Harcos, G., l-adic representations associated to modular forms over imaginary quadratic fields, Int. Math. Res. Not. IMRN (2007), Art. ID rnm113, 16
[7]Berger, T. and Klosin, K., A deformation problem for Galois representations over imaginary quadratic fields, Journal de l’Institut de Math. de Jussieu, to appear.
[8]Berkove, E., The integral cohomology of the Bianchi groups, Trans. Amer. Math. Soc. 358 (2006), 10331049, electronic.
[9]Bloch, S. and Kato, K., L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift, Vol. I, Progress in Mathematics, vol. 86 (Birkhäuser, Boston, MA, 1990), 333400.
[10]Blume-Nienhaus, J., Lefschetzzahlen für Galois-Operationen auf der Kohomologie arithmetischer Gruppen, Bonner Mathematische Schriften, vol. 230 (Universität Bonn Mathematisches Institut, Bonn, 1992).
[11]Bredon, G. E., Sheaf theory,, Graduate Texts in Mathematics, vol. 170, second edition (Springer, New York, 1997).
[12]Bump, D., Friedberg, S. and Hoffstein, J., Nonvanishing theorems for L-functions of modular forms and their derivatives, Invent. Math. 102 (1990), 543618.
[13]Calegari, F. and Dunfield, N. M., Automorphic forms and rational homology 3-spheres, Geometry and Topology 10 (2006), 295329.
[14]Cremona, J. E., Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields, J. London Math. Soc. 45 (1992), 404416.
[15]Dee, J., Selmer groups of Hecke characters and Chow groups of self products of CM elliptic curves, Preprint (1999), arXiv:math.NT/9901155.
[16]Diamond, F., Flach, M. and Guo, L., The Tamagawa number conjecture of adjoint motives of modular forms, Ann. Sci. École Norm. Sup. (4) 37 (2004), 663727.
[17]Dokchitser, T., Computing special values of motivic L-functions, Experiment. Math. 13 (2004), 137149.
[18]Elstrodt, J., Grunewald, F. and Mennicke, J., On the group PSL2(Z[i]), Number theory days, Exeter, 1980, London Mathematical Society Lecture Note Series, vol. 56 (Cambridge University Press, Cambridge, 1982), 255283.
[19]Elstrodt, J., Grunewald, F. and Mennicke, J., Groups acting on hyperbolic space, Springer Monographs in Mathematics (Springer, Berlin, 1998).
[20]Feldhusen, D., Nenner der Eisensteinkohomologie der GL(2) über imaginär quadratischen Zahlkörpern, Bonner Mathematische Schriften, vol. 330 (Universität Bonn Mathematisches Institut, Bonn, 2000).
[21]Flach, M., A generalisation of the Cassels-Tate pairing, J. Reine Angew. Math. 412 (1990), 113127.
[22]Franke, J. and Schwermer, J., A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups, Math. Ann. 311 (1998), 765790.
[23]Gérardin, P. and Labesse, J.-P., The solution of a base change problem for GL(2) (following Langlands, Saito, Shintani), Automorphic forms, representations and L-functions, Oregon State University, Corvallis, OR, 1977, Part 2, Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), 115133.
[24]Greenberg, M., Lectures on algebraic topology (W. A. Benjamin, New York, 1967).
[25]Greenberg, R., On the Birch and Swinnerton-Dyer conjecture, Invent. Math. 72 (1983), 241265.
[26]Greenberg, R., Iwasawa theory for p-adic representations, Algebraic number theory, Advanced Studies in Pure Mathematics, vol. 17 (Academic Press, Boston, MA, 1989), 97137.
[27]Grunewald, F. and Schwermer, J., Subgroups of Bianchi groups and arithmetic quotients of hyperbolic 3-space, Trans. Amer. Math. Soc. 335 (1993), 4778.
[28]Guo, Li, General Selmer groups and critical values of Hecke L-functions, Math. Ann. 297 (1993), 221233.
[29]Guo, Li, On the Bloch-Kato conjecture for Hecke L-functions, J. Number Theory 57 (1996), 340365.
[30]Han, B., On Bloch-Kato’s Tamagawa number conjecture for Hecke characters of imaginary quadratic fields, PhD thesis, University of Illinois, Chicago, 1997,http://front.math.ucdavis.edu/ANT/0070.
[31]Harder, G., Eisenstein cohomology of arithmetic groups. The case GL2, Invent. Math. 89 (1987), 37118.
[32]Harris, M., Soudry, D. and Taylor, R., l-adic representations associated to modular forms over imaginary quadratic fields. I. Lifting to GSp4(Q), Invent. Math. 112 (1993), 377411.
[33]Hida, H., Kummer’s criterion for the special values of Hecke L-functions of imaginary quadratic fields and congruences among cusp forms, Invent. Math. 66 (1982), 415459.
[34]Harder, G., Langlands, R. and Rapoport, M., Algebraische Zyklen auf Hilbert-Blumenthal-Flächen, J. Reine Angew. Math. 366 (1986), 53120.
[35]Harder, G. and Pink, R., Modular konstruierte unverzweigte abelsche p-Erweiterungen von Q(ζ p) und die Struktur ihrer Galoisgruppen, Math. Nachr. 159 (1992), 8399.
[36]Kato, K., Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via B dR. I, in Arithmetic algebraic geometry, Trento, 1991, Lecture Notes in Mathematics, vol. 1553 (Springer, Berlin, 1993), 50163.
[37]Klosin, K., Congruences among modular forms on U(2,2) and the Bloch-Kato conjecture, Ann. Inst. Fourier 59 (2009), 81166.
[38]Laumon, G., Sur la cohomologie à supports compacts des variétés de Shimura pour GSp(4)Q, Compositio Math. 105 (1997), 267359.
[39]Laumon, G., Fonctions zêtas des variétés de Siegel de dimension trois, Astérisque 302 (2005), 166 (Formes automorphes. II. Le cas du groupe GSp(4)).
[40]Maunder, C. R. F., Algebraic topology (Cambridge University Press, Cambridge, 1980).
[41]May, J. P., A concise course in algebraic topology, Chicago Lectures in Mathematics (University of Chicago Press, Chicago, IL, 1999).
[42]Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322 (Springer, Berlin, 1999). (Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder.)
[43]Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, second edition (Springer, Berlin, 2008).
[44]Ribet, K. A., A modular construction of unramified p-extensions of Q(μ p), Invent. Math. 34 (1976), 151162.
[45]Rubin, K., The main conjectures of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 2568.
[46]Rubin, K., Euler systems, Annals of Mathematics Studies, vol. 147 (Princeton University Press, Princeton, NJ, 2000). (Hermann Weyl Lectures. The Institute for Advanced Study.)
[47]Serre, J.-P., Abelian l-adic representations and elliptic curves, McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute (W. A. Benjamin, Inc., New York-Amsterdam, 1968).
[48]Serre, J.-P., Le probleme de groupes de congruence pour SL2, Ann. of Math. 92 (1970).
[49]Skinner, C. and Urban, E., Sur les déformations p-adiques des formes de Saito-Kurokawa, C. R. Math. Acad. Sci. Paris 335 (2002), 581586.
[50]Schwermer, J. and Vogtmann, K., The integral homology of SL2 and PSL2 of Euclidean imaginary quadratic integers, Comment. Math. Helv. 58 (1983), 573598.
[51]Swan, R. G., Generators and relations for certain special linear groups, Adv. Math. 6 (1971), 177 1971
[52]Taylor, R., Congruences of modular forms, PhD thesis, Harvard, 1988.
[53]Taylor, R., l-adic representations associated to modular forms over imaginary quadratic fields. II, Invent. Math. 116 (1994), 619643.
[54]Urban, E., Formes automorphes cuspidales pour GL2 sur un corps quadratique imaginaire. Valeurs spéciales de fonctions L et congruences, Compositio Math. 99 (1995), 283324.
[55]Urban, E., Module de congruences pour GL(2) d’un corps imaginaire quadratique et théorie d’Iwasawa d’un corps CM biquadratique, Duke Math. J. 92 (1998), 179220.
[56]Urban, E., Selmer groups and the Eisenstein-Klingen ideal, Duke Math. J. 106 (2001), 485525.
[57]Urban, E., Sur les représentation p-adiques associées aux représentations cuspidales de GSp4/Q, Astérisque 302 (2005), 151176.
[58]Weissauer, R., Four dimensional Galois representations, Astérisque 302 (2005), 67150 (Formes automorphes. II. Le cas du groupe GSp(4)).
[59]Wiles, A., On p-adic representations for totally real fields, Ann. of Math. (2) 123 (1986), 407456.
[60]Wiles, A., The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), 493540.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

On the Eisenstein ideal for imaginary quadratic fields

  • Tobias Berger (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed