Skip to main content Accessibility help
×
Home

Normal crossing properties of complex hypersurfaces via logarithmic residues

  • Michel Granger (a1) and Mathias Schulze (a2)

Abstract

We introduce a dual logarithmic residue map for hypersurface singularities and use it to answer a question of Kyoji Saito. Our result extends a theorem of Lê and Saito by an algebraic characterization of hypersurfaces that are normal crossing in codimension one. For free divisors, we relate the latter condition to other natural conditions involving the Jacobian ideal and the normalization. This leads to an algebraic characterization of normal crossing divisors. As a side result, we describe all free divisors with Gorenstein singular locus.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Normal crossing properties of complex hypersurfaces via logarithmic residues
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Normal crossing properties of complex hypersurfaces via logarithmic residues
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Normal crossing properties of complex hypersurfaces via logarithmic residues
      Available formats
      ×

Copyright

References

Hide All
[Ale88]Aleksandrov, A. G., Nonisolated Saito singularities, Mat. Sb. (N.S.) 137(179) (1988), 554567, 576; MR 981525 (90b:32024).
[Ale12]Aleksandrov, A. G., Multidimensional residue theory and the logarithmic de Rham complex, J. Singul. 5 (2012), 118; MR 2928930.
[AT01]Aleksandrov, A. G. and Tsikh, A. K., Théorie des résidus de Leray et formes de Barlet sur une intersection complète singulière, C. R. Acad. Sci. Paris Math. Sér. I 333 (2001), 973978; MR 1872457 (2002m:32004).
[Bar78]Barlet, D., Le faisceau ω X sur un espace analytique X de dimension pure, in Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977), Lecture Notes in Mathematics, vol. 670 (Springer, Berlin, 1978), 187204; MR 521919 (80i:32037).
[BC13]Buchweitz, R.-O. and Conca, A., New free divisors from old, J. Commut. Algebra 5 (2013), 1747; MR 3084120.
[BH93]Bruns, W. and Herzog, J., Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39 (Cambridge University Press, Cambridge, 1993); MR 1251956 (95h:13020).
[DM91]Damon, J. and Mond, D., A-codimension and the vanishing topology of discriminants, Invent. Math. 106 (1991), 217242; MR 1128213 (92m:58011).
[dGMS09]de Gregorio, I., Mond, D. and Sevenheck, C., Linear free divisors and Frobenius manifolds, Compositio. Math. 145 (2009), 13051350; MR 2551998 (2011b:32049).
[dJP00]de Jong, T. and Pfister, G., Local analytic geometry, in Advanced Lectures in Mathematics, Friedr, Basic Theory and Applications (Vieweg & Sohn, Braunschweig, 2000); MR 1760953 (2001c:32001).
[dJvS90]de Jong, T. and van Straten, D., Deformations of the normalization of hypersurfaces, Math. Ann. 288 (1990), 527547; MR 1079877 (92d:32050).
[Del71]Deligne, P., Théorie de Hodge. II, Publ. Math. Inst. Hautes Études Sci. (1971), 557; MR 0498551 (58 #16653a).
[Del72]Deligne, P., Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273302; MR 0422673 (54 #10659).
[Del81]Deligne, P., Le groupe fondamental du complément d’une courbe plane n’ayant que des points doubles ordinaires est abélien (d’après W. Fulton), Bourbaki Seminar, vol. 1979/80, Lecture Notes in Mathematics, vol. 842 (Springer, Berlin, 1981), 110; MR 636513 (83f:14026).
[DS12]Denham, G. and Schulze, M., Complexes, duality and Chern classes of logarithmic forms along hyperplane arrangements, in Arrangements of hyperplanes—Sapporo 2009, Advanced Studies in Pure Mathematics, vol. 62 (Mathematical Society of Japan, Tokyo, 2012), 2757; MR 2933791.
[Dol07]Dolgachev, I. V., Logarithmic sheaves attached to arrangements of hyperplanes, J. Math. Kyoto Univ. 47 (2007), 3564; MR 2359100 (2008h:14018).
[ER95]Edelman, P. H. and Reiner, V., Not all free arrangements are K (π, 1), Bull. Amer. Math. Soc. (N.S.) 32 (1995), 6165; MR 1273396 (95g:52017).
[Eis95]Eisenbud, D., Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150 (Springer, New York, 1995); MR 1322960 (97a:13001).
[EG85]Evans, E. G. and Griffith, P., Syzygies, London Mathematical Society Lecture Note Series, vol. 106 (Cambridge University Press, Cambridge, 1985); MR 811636 (87b:13001).
[Fab11]Faber, E., Normal crossings in local analytic geometry, PhD thesis, Universität Wien (2011).
[Fab12]Faber, E., Characterizing normal crossing hypersurfaces, Preprint (2012), arXiv:1201.6276 [math.AG].
[Ful80]Fulton, W., On the fundamental group of the complement of a node curve, Ann. of Math. (2) 111 (1980), 407409; MR 569076 (82e:14035).
[GMS11]Granger, M., Mond, D. and Schulze, M., Free divisors in prehomogeneous vector spaces, Proc. Lond. Math. Soc. (3) 102 (2011), 923950; MR 2795728.
[Har77]Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics No. 52 (Springer, New York, 1977); MR 0463157 (57 #3116).
[Har80]Hartshorne, R., Stable reflexive sheaves, Math. Ann. 254 (1980), 121176; MR 597077 (82b:14011).
[HK71]Herzog, J. and Kunz (eds.), E., Der kanonische Modul eines Cohen–Macaulay-Rings, Lecture Notes in Mathematics, vol. 238 (Springer, Berlin, 1971); Seminar über die lokale Kohomologietheorie von Grothendieck, Universität Regensburg, Wintersemester 1970/1971; MR 0412177 (54 #304).
[KW84]Kunz, E. and Waldi, R., Über den Derivationenmodul und das Jacobi-Ideal von Kurvensingularitäten, Math. Z. 187 (1984), 105123; MR 753425 (85j:14033).
[LS84], D. T. and Saito, K., The local π 1of the complement of a hypersurface with normal crossings in codimension 1 is abelian, Ark. Mat. 22 (1984), 124; MR 735874 (86a:32019).
[Ler59]Leray, J., Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III), Bull. Soc. Math. France 87 (1959), 81180; MR 0125984 (23 #A3281).
[Lip69]Lipman, J., On the Jacobian ideal of the module of differentials, Proc. Amer. Math. Soc. 21 (1969), 422426; MR 0237511 (38 #5793).
[Loo84]Looijenga, E. J. N., Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series, vol. 77 (Cambridge University Press, Cambridge, 1984); MR 747303 (86a:32021).
[MY82]Mather, J. N. and Yau, S. S. T., Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69 (1982), 243251; MR 674404 (84c:32007).
[MP89]Mond, D. and Pellikaan, R., Fitting ideals and multiple points of analytic mappings, in Algebraic geometry and complex analysis (Pátzcuaro, 1987), Lecture Notes in Mathematics, vol. 1414 (Springer, Berlin, 1989), 107161; MR 1042359 (91e:32035).
[OZ87]Oneto, A. and Zatini, E., Jacobians and differents of projective varieties, Manuscripta Math. 58 (1987), 487495; MR 894866 (88e:14027).
[Pie79]Piene, R., Ideals associated to a desingularization, in Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Mathematics, vol. 732 (Springer, Berlin, 1979), 503517; MR 555713 (81a:14001).
[Poi87]Poincaré, H., Sur les résidus des intégrales doubles, Acta Math. 9 (1887), 321380; MR 1554721.
[Sai71]Saito, K., Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123142; MR 0294699 (45 #3767).
[Sai80]Saito, K., Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265291; MR 586450 (83h:32023).
[Sch64]Scheja, G., Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakterisierung, Math. Ann. 157 (1964), 7594; MR 0176466 (31 #738).
[Ter80a]Terao, H., Arrangements of hyperplanes and their freeness. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 293312; MR 586451 (84i:32016a).
[Ter80b]Terao, H., Free arrangements of hyperplanes and unitary reflection groups, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 389392; MR 596011 (82e:32018a).
[vS95]van Straten, D., A note on the discriminant of a space curve, Manuscripta Math. 87 (1995), 167177; MR 1334939 (96e:32032).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed