Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-d5zgf Total loading time: 0.558 Render date: 2021-02-26T01:27:04.043Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Metric Diophantine approximation on homogeneous varieties

Published online by Cambridge University Press:  20 June 2014

Anish Ghosh
Affiliation:
School of Mathematics, University of East Anglia, Norwich, UK email ghosh@math.tifr.res.in Current address: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
Alexander Gorodnik
Affiliation:
School of Mathematics, University of Bristol, Bristol, UK email a.gorodnik@bristol.ac.uk
Amos Nevo
Affiliation:
Department of Mathematics, Technion IIT, Israel email anevo@tx.technion.ac.il
Rights & Permissions[Opens in a new window]

Abstract

We develop the metric theory of Diophantine approximation on homogeneous varieties of semisimple algebraic groups and prove results analogous to the classical Khintchine and Jarník theorems. In full generality our results establish simultaneous Diophantine approximation with respect to several completions, and Diophantine approximation over general number fields using $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}S$ -algebraic integers. In several important examples, the metric results we obtain are optimal. The proof uses quantitative equidistribution properties of suitable averaging operators, which are derived from spectral bounds in automorphic representations.

Type
Research Article
Copyright
© The Author(s) 2014 

References

Beresnevich, V. and Velani, S., A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures, Ann. of Math. (2) 164 (2006), 971992.CrossRefGoogle Scholar
Bernik, V. and Dodson, M. M., Metric diophantine approximation on manifolds, Cambridge Tracts in Mathematics, vol. 137 (Cambridge University Press, Cambridge, 1999).CrossRefGoogle Scholar
Blomer, V. and Brumley, F., On the Ramanujan conjecture over number fields, Ann. of Math. (2) 174 (2011), 581605.CrossRefGoogle Scholar
Clozel, L., Automorphic forms and the distribution of points on odd-dimensional spheres, Israel J. Math. 132 (2002), 175187.CrossRefGoogle Scholar
Clozel, L., Démonstration de la conjecture τ, Invent. Math. 151 (2003), 297328.CrossRefGoogle Scholar
Dani, S. G., Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math. 359 (1985), 5589.Google Scholar
Drutu, C., Diophantine approximation on rational quadrics, Math. Ann. 333 (2005), 405469.CrossRefGoogle Scholar
Ghosh, A., Gorodnik, A. and Nevo, A., Diophantine approximation and automorphic spectrum, Int. Math. Res. Not. IMRN 2012; doi:10.1093/imrn/rns198.CrossRefGoogle Scholar
Ghosh, A., Gorodnik, A. and Nevo, A., Diophantine approximation exponents on homogeneous varieties, Contemp. Math., to appear, arXiv:1401.6581 [math.NT].Google Scholar
Gorodnik, A. and Nevo, A., Quantitative ergodic theorems and their number-theoretic applications, Preprint.Google Scholar
Harman, G., Metric number theory, London Mathematical Society Monographs, vol. 18 (Clarendon Press, New York, 1998).Google Scholar
Jarník, V., Diophantische Approximationen und Hausdorffsches Mass, Mat. Sb. 36 (1929), 371382.Google Scholar
Khintchine, A., Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann. 92 (1924), 115125.CrossRefGoogle Scholar
Kim, H., Functoriality for the exterior square of GL4and the symmetric fourth of GL2. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak, J. Amer. Math. Soc. 16 (2003), 139183.CrossRefGoogle Scholar
Kleinbock, D., Quantitative nondivergence and its Diophantine applications, in Homogeneous flows, moduli spaces and arithmetic, Clay Mathematics Proceedings, vol. 10 (American Mathematical Society, Providence, RI, 2010), 131153.Google Scholar
Kleinbock, D. and Margulis, G., Logarithm laws for flows on homogeneous spaces, Invent. Math. 138 (1999), 451494.CrossRefGoogle Scholar
Kleinbock, D. and Merrill, K., Rational approximation on spheres, Preprint (2013),arXiv:1301.0989.Google Scholar
Lang, S., Report on Diophantine approximation, Bull. Soc. Math. France 93 (1965), 177192.CrossRefGoogle Scholar
Lubotzky, A., Discrete groups, expanding graphs and invariant measures, with an appendix by Jonathan D. Rogawski, Progress in Mathematics, vol. 125 (Birkhäuser Verlag, Basel, 1994).CrossRefGoogle Scholar
Platonov, V. and Rapinchuk, A., Algebraic groups and number theory (Academic Press, New York, 1994).Google Scholar
Sarnak, P., Notes on the generalized Ramanujan conjectures, in Harmonic analysis, the trace formula, and Shimura varieties, Clay Mathematics Proceedings, vol. 4 (American Mathematical Society, Providence, RI, 2005), 659685.Google Scholar
Shin, S. W., Galois representations arising from some compact Shimura varieties, Ann. of Math. (2) 173 (2011), 16451741.CrossRefGoogle Scholar
Sprindzuk, V. G., Metric theory of Diophantine approximations, Scripta Series in Mathematics (V. H. Winston, Washington, DC, 1979).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 86 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Metric Diophantine approximation on homogeneous varieties
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Metric Diophantine approximation on homogeneous varieties
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Metric Diophantine approximation on homogeneous varieties
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *