Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-9mfzn Total loading time: 14.426 Render date: 2021-04-17T14:31:41.904Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A Lie-theoretic interpretation of multivariate hypergeometric polynomials

Published online by Cambridge University Press:  20 March 2012

Plamen Iliev
Affiliation:
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA (email: iliev@math.gatech.edu)
Rights & Permissions[Opens in a new window]

Abstract

In 1971, Griffiths used a generating function to define polynomials in d variables orthogonal with respect to the multinomial distribution. The polynomials possess a duality between the discrete variables and the degree indices. In 2004, Mizukawa and Tanaka related these polynomials to character algebras and the Gelfand hypergeometric series. Using this approach, they clarified the duality and obtained a new proof of the orthogonality. In the present paper, we interpret these polynomials within the context of the Lie algebra . Our approach yields yet another proof of the orthogonality. It also shows that the polynomials satisfy d independent recurrence relations each involving d2+d+1 terms. This, combined with the duality, establishes their bispectrality. We illustrate our results with several explicit examples.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[BI84]Bannai, E. and Ito, T., Algebraic combinatorics. I. Association schemes (Benjamin/Cummings, Menlo Park, CA, 1984).Google Scholar
[DS02]Dougherty, S. T. and Skriganov, M. M., MacWilliams duality and the Rosenbloom–Tsfasman metric, Mosc. Math. J. 2 (2002), 8197.Google Scholar
[DG86]Duistermaat, J. J. and Grünbaum, F. A., Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), 177240.CrossRefGoogle Scholar
[DX01]Dunkl, C. F. and Xu, Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, vol. 81 (Cambridge University Press, Cambridge, 2001).CrossRefGoogle Scholar
[GI10]Geronimo, J. and Iliev, P., Bispectrality of multivariable Racah–Wilson polynomials, Constr. Approx. 31 (2010), 417457.CrossRefGoogle Scholar
[Gri71]Griffiths, R. C., Orthogonal polynomials on the multinomial distribution, Austral. J. Statist. 13 (1971), 2735.CrossRefGoogle Scholar
[Gru07]Grünbaum, F. A., The Rahman polynomials are bispectral, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007) 11 (Paper 065).Google Scholar
[GR10]Grünbaum, F. A. and Rahman, M., On a family of 2-variable orthogonal Krawtchouk polynomials, SIGMA Symmetry Integrability Geom. Methods Appl. 6 (2010) 12 (Paper 090).Google Scholar
[HR08]Hoare, M. R. and Rahman, M., A probabilistic origin for a new class of bivariate polynomials, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008) 18 (Paper 089).Google Scholar
[IT]Iliev, P. and Terwilliger, P., The Rahman polynomials and the Lie algebra , Trans. Amer. Math. Soc., to appear.Google Scholar
[IX07]Iliev, P. and Xu, Y., Discrete orthogonal polynomials and difference equations of several variables, Adv. Math. 212 (2007), 136.CrossRefGoogle Scholar
[Mil68]Milch, P. R., A multi-dimensional linear growth birth and death process, Ann. Math. Statist. 39 (1968), 727754.CrossRefGoogle Scholar
[MT04]Mizukawa, H. and Tanaka, H., (n+1,m+1)-hypergeometric functions associated to character algebras, Proc. Amer. Math. Soc. 132 (2004), 26132618.CrossRefGoogle Scholar
[Ter01]Terwilliger, P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149203.CrossRefGoogle Scholar
[Ter06]Terwilliger, P., An algebraic approach to the Askey scheme of orthogonal polynomials, in Orthogonal polynomials and special functions, Lecture Notes in Mathematics, vol. 1883 (Springer, Berlin, 2006), 255330.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 120 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Lie-theoretic interpretation of multivariate hypergeometric polynomials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Lie-theoretic interpretation of multivariate hypergeometric polynomials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Lie-theoretic interpretation of multivariate hypergeometric polynomials
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *