Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s65px Total loading time: 0.278 Render date: 2021-03-04T09:41:22.409Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Level-raising for Saito–Kurokawa forms

Published online by Cambridge University Press:  01 July 2009

Claus M. Sorensen
Affiliation:
Department of Mathematics, Princeton University, Princeton, NJ 08544, USA (email: claus@princeton.edu)
Rights & Permissions[Opens in a new window]

Abstract

This paper provides congruences between unstable and stable automorphic forms for the symplectic similitude group GSp(4). More precisely, we raise the level of certain CAP representations Π arising from classical modular forms. We first transfer Π to π on a suitable inner form G; this is achieved by θ-lifting. For π, we prove a precise level-raising result that is inspired by the work of Bellaiche and Clozel and which relies on computations of Schmidt. We thus obtain a congruent to π, with a local component that is irreducibly induced from an unramified twist of the Steinberg representation of the Klingen parabolic. To transfer back to GSp(4), we use Arthur’s stable trace formula. Since has a local component of the above type, all endoscopic error terms vanish. Indeed, by results due to Weissauer, we only need to show that such a component does not participate in the θ-correspondence with any GO(4); this is an exercise in using Kudla’s filtration of the Jacquet modules of the Weil representation. We therefore obtain a cuspidal automorphic representation of GSp(4), congruent to Π, which is neither CAP nor endoscopic. It is crucial for our application that we can arrange for to have vectors fixed by the non-special maximal compact subgroups at all primes dividing N. Since G is necessarily ramified at some prime r, we have to show a non-special analogue of the fundamental lemma at r. Finally, we give an application of our main result to the Bloch–Kato conjecture, assuming a conjecture of Skinner and Urban on the rank of the monodromy operators at the primes dividing N.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2009

References

[1]Arthur, J., On local character relations, Selecta Math. 2 (1996), 501579.CrossRefGoogle Scholar
[2]Arthur, J., Towards a stable trace formula, in Proceedings of the international congress of mathematicians (Berlin, 1998), vol. II, Doc. Math., extra vol. ICM II1998, 507517.Google Scholar
[3]Bellaiche, J., Congruences endoscopiques et représentations Galoisiennes. PhD thesis, Université Paris XI, Orsay (2002) (http://people.brandeis.edu/∼jbellaic/).Google Scholar
[4]Blasius, D. and Rogawski, J., Zeta functions of Shimura varieties, in Motives (Seattle, WA, 1991), Proceedings of Symposia in Pure Mathematics, vol. 55, part 2 (American Mathematical Society, Providence, RI, 1994), 525571.Google Scholar
[5]Bloch, S. and Kato, K., L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift, vol. I, Progress in Mathematics, vol. 86 (Birkhäuser, Boston, MA, 1990), 333400.Google Scholar
[6]Breuil, C. and Messing, W., Torsion étale and crystalline cohomologies, in Cohomologies p-adiques et applications arithmétiques, II, Astérisque, vol. 279 (Société Mathématique de France, Paris, 2002), 81124.Google Scholar
[7]Cartier, P., Representations of p-adic groups: a survey, in Automorphic forms, representations and L-functions, Proceedings of Symposia in Pure Mathematics, vol. 33, part 1 (American Mathematical Society, Providence, RI, 1979), 111155.CrossRefGoogle Scholar
[8]Casselman, W., A new nonunitarity argument for p-adic representations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1982), 907928.Google Scholar
[9]Chai, C.-L. and Norman, P., Bad reduction of the Siegel moduli scheme of genus two with Γ0(p)-level structure, Amer. J. Math. 112 (1990), 10031071.CrossRefGoogle Scholar
[10]Clozel, L., On Ribet’s level-raising theorem for U(3), Amer. J. Math. 122 (2000), 12651287.CrossRefGoogle Scholar
[11]de Jong, J., The moduli spaces of principally polarized abelian varieties with Γ0(p)-level structure, J. Algebraic Geom. 2 (1993), 667688.Google Scholar
[12]Deligne, P., Formes modulaires et représentations -adiques, in Séminaire Bourbaki 1968/69, Lecture Notes in Mathematics, vol. 79 (Springer, Berlin, 1971), 347363.Google Scholar
[13]Deligne, P. and Serre, J.-P., Formes modulaires de poids 1, Ann. Sci. Ecole Norm. Sup. (4) 7 (1974), 507530.CrossRefGoogle Scholar
[14]Fontaine, J.-M. and Laffaille, G., Construction de représentations p-adiques, Ann. Sci. Ecole Norm. Sup. (4) 15 (1982), 547608.CrossRefGoogle Scholar
[15]Gan, W. T., The Saito-Kurokawa space of PGSp4 and its transfer to inner forms, in Proceedings of the AIM workshop “Eisenstein Series and Applications” (Palo Alto, 2005), Progress in Mathematics, vol. 258 (Birkhäuser, Boston, MA, 2008), (http://www.math.ucsd.edu/∼wgan/.)Google Scholar
[16]Gan, W. T. and Gurevich, N., Non-tempered Arthur packets of G 2, in Automorphic representations, L-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11 (de Gruyter, Berlin, 2005), 129155.Google Scholar
[17]Genestier, A. and Tilouine, J., Systemes de Taylor-Wiles pour GSp4, in Formes automorphes. II: Le cas du groupe GSp(4), Astérisque, no. 302 (Société Mathématique de France, Paris, 2005), 177290.Google Scholar
[18]Greenberg, M., Schemata over local rings. II, Ann. of Math. (2) 78 (1963), 256266.CrossRefGoogle Scholar
[19]Haines, T. and Ngô, B. C., Nearby cycles for local models of some Shimura varieties, Compositio Math. 133 (2002), 117150.CrossRefGoogle Scholar
[20]Hales, T., Shalika germs on GSp(4), in Orbites unipotentes et representations. II, Astérisque, no. 171–172 (Société Mathématique de France, Paris, 1989), 195256.Google Scholar
[21]Hales, T., The fundamental lemma for Sp(4), Proc. Amer. Math. Soc. 125 (1997), 301308.CrossRefGoogle Scholar
[22]Jordan, B. and Livne, R., Conjecture “epsilon” for weight k>2, Bull. Amer. Math. Soc. 21 (1989), 5156.CrossRefGoogle Scholar
[23]Kato, K., p-adic Hodge theory and values of zeta functions of modular forms, in Cohomologies p-adiques et applications arithmetiques. III, Asterisque, no. 295 (Société Mathématique de France, Paris, 2004), 117290.Google Scholar
[24]Kazhdan, D. and Lusztig, G., Proof of the Deligne–Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), 153215.CrossRefGoogle Scholar
[25]Kottwitz, R., Sign changes in harmonic analysis on reductive groups, Trans. Amer. Math. Soc. 278 (1983), 289297.CrossRefGoogle Scholar
[26]Kottwitz, R., Base change for unit elements of Hecke algebras, Compositio Math. 60 (1986), 237250.Google Scholar
[27]Kudla, S., On the local theta-correspondence, Invent. Math. 83 (1986), 229255.CrossRefGoogle Scholar
[28]Kudla, S., Notes on the local theta-correspondence, unpublished notes (http://www.math.utoronto.ca/∼skudla/ssk.research.html).Google Scholar
[29]Kudla, S., Rallis, S. and Soudry, D., On the degree 5 L-function for Sp(2), Invent. Math. 107 (1992), 483541.CrossRefGoogle Scholar
[30]Labesse, J.-P. and Muller, W., Weak Weyl’s law for congruence subgroups, Asian J. Math. 8 (2004), 733745.CrossRefGoogle Scholar
[31]Langlands, R., On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, vol. 544 (Springer, Berlin, New York, 1976).CrossRefGoogle Scholar
[32]Langlands, R. and Shelstad, D., Descent for transfer factors. The Grothendieck Festschrift, vol. II, Progress in Mathematics, vol. 87 (Birkhäuser, Boston, MA, 1990), 485563.Google Scholar
[33]Laumon, G., Sur la cohomologie a supports compacts des varietes de Shimura pour GSp(4), Compositio Math. 105 (1997), 267359.CrossRefGoogle Scholar
[34]Lazarus, X., Module universel non ramifie pour un groupe reductif p-adique. PhD thesis, Université Paris XI, Orsay (2000).Google Scholar
[35]Li, J.-S., Theta lifting for unitary representations with nonzero cohomology, Duke Math. J. 61 (1990), 913937.CrossRefGoogle Scholar
[36]Piatetski-Shapiro, I., On the Saito–Kurokawa lifting, Invent. Math. 71 (1983), 309338.CrossRefGoogle Scholar
[37]Ramakrishnan, D., Irreducibility and cuspidality, in Representation theory and automorphic forms, Progress in Mathematics, vol. 255 (Birkhäuser, Boston, MA, 2008), 127.Google Scholar
[38]Rapoport, M., On the bad reduction of Shimura varieties, in Automorphic forms, Shimura varieties, and L-functions (Ann Arbor, MI, 1988), vol. II, Perspectives in Mathematics, vol. 11 (Academic Press, Boston, MA, 1990), 253321.Google Scholar
[39]Ribet, K., On -adic representations attached to modular forms. II, Glasgow Math. J. 27 (1985), 185194.CrossRefGoogle Scholar
[40]Roberts, B., The theta correspondence for similitudes, Israel J. Math. 94 (1996), 285317.CrossRefGoogle Scholar
[41]Roberts, B., The non-Archimedean theta correspondence for GSp(2) and GO(4), Trans. Amer. Math. Soc. 351 (1999), 781811.CrossRefGoogle Scholar
[42]Rubin, K., Euler systems (Hermann Weyl lectures, The Institute for Advanced Study), Annals of Mathematics Studies, vol. 147 (Princeton University Press, Princeton, NJ, 2000).Google Scholar
[43]Sally, P. and Tadic, M., Induced representations and classifications for GSp(2,F) and Sp(2,F), Mem. Soc. Math. France 52 (1993), 75133.CrossRefGoogle Scholar
[44]Schmidt, R., Iwahori-spherical representations of GSp(4) and Siegel modular forms of degree 2 with square-free level, J. Math. Soc. Japan 57 (2005), 259293.CrossRefGoogle Scholar
[45]Shelstad, D., Characters and inner forms of a quasi-split group over ℝ, Compositio Math. 39 (1979), 1145.Google Scholar
[46]Shelstad, D., L-indistinguishability for real groups, Math. Ann. 259 (1982), 385430.CrossRefGoogle Scholar
[47]Skinner, C. and Urban, E., Sur les déformations p-adiques de certaines représentations automorphes, J. Inst. Math. Jussieu 5 (2006), 629698.CrossRefGoogle Scholar
[48]Sorensen, C., A generalization of level-raising congruences for algebraic modular forms, Ann. Inst. Fourier (Grenoble) 56 (2006), 17351766.CrossRefGoogle Scholar
[49]Soudry, D., The CAP representations of GSp(4,𝔸), J. Reine Angew. Math. 383 (1988), 87108.Google Scholar
[50]Tate, J., Number theoretic background, in Automorphic forms, representations and L-functions (Corvallis, OR, 1977), Proceedings of Symposia in Pure Mathematics, vol. 33, part 2 (American Mathematical Society, Providence, RI, 1979), 326.CrossRefGoogle Scholar
[51]Taylor, R., On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), 265280.CrossRefGoogle Scholar
[52]Tits, J., Reductive groups over local fields, in Automorphic forms, representations and L-functions, Proceedings of Symposia in Pure Mathematics, vol. 33, part 1 (American Mathematical Society, Providence, RI, 1979), 2969.CrossRefGoogle Scholar
[53]Vigneras, M.-F., Representations -modulaires d’un groupe reductif p-adique avec p, Progress in Mathematics, vol. 137 (Birkhäuser, Boston, MA, 1996).Google Scholar
[54]Waldspurger, J.-L., Le lemme fondamental implique le transfert, Compositio Math. 105 (1997), 153236.CrossRefGoogle Scholar
[55]Weissauer, R., Four dimensional Galois representations, in Formes automorphes. II: Le cas du groupe GSp(4), Astérisque, no. 302 (Société Mathématique de France, Paris, 2005), 67150.Google Scholar
[56]Weissauer, R., Character identities and Galois representations related to the group GSp(4), Preprint (http://www.mathi.uni-heidelberg.de/∼weissaue/papers.html).Google Scholar
[57]Weissauer, R., Endoscopy for GSp(4), Preprint (http://www.mathi.uni-heidelberg.de/∼weissaue/papers.html).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 99 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th March 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Level-raising for Saito–Kurokawa forms
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Level-raising for Saito–Kurokawa forms
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Level-raising for Saito–Kurokawa forms
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *