Skip to main content Accessibility help
×
Home

The Gross–Kohnen–Zagier theorem over totally real fields

Published online by Cambridge University Press:  10 August 2009

Xinyi Yuan
Affiliation:
Department of Mathematics, Columbia University, New York, NY 10027, USA (email: yxy@math.columbia.edu)
Shou-Wu Zhang
Affiliation:
Department of Mathematics, Columbia University, New York, NY 10027, USA (email: szhang@math.columbia.edu)
Wei Zhang
Affiliation:
Department of Mathematics, Columbia University, New York, NY 10027, USA (email: weizhang@math.columbia.edu)
Rights & Permissions[Opens in a new window]

Abstract

On Shimura varieties of orthogonal type over totally real fields, we prove a product formula and the modularity of Kudla’s generating series of special cycles in Chow groups.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2009

References

[1]Borcherds, R., The Gross–Kohnen–Zagier theorem in higher dimensions, Duke Math. J. 97 (1999), 219233.CrossRefGoogle Scholar
[2]Gross, B., Kohnen, W. and Zagier, D., Heegner points and derivatives of L-series. II, Math. Ann. 278 (1987), 497562.CrossRefGoogle Scholar
[3]Gross, B. and Kudla, S., Heights and the central critical values of triple product L-functions, Compositio Math. 81 (1992), 143209.Google Scholar
[4]Gross, B. and Zagier, D., Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225320.CrossRefGoogle Scholar
[5]Hirzebruch, F. and Zagier, D., Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math. 36 (1976), 57113.CrossRefGoogle Scholar
[6]Kudla, S., Algebraic cycles on Shimura varieties of orthogonal type, Duke Math. J. 86 (1997), 3978.CrossRefGoogle Scholar
[7]Kudla, S., Special cycles and derivatives of Eisenstein series, in Heegner points and Rankin L-series, Mathematical Sciences Research Institute Publications, vol. 49 (Cambridge University Press, Cambridge, 2004), 243270.CrossRefGoogle Scholar
[8]Kudla, S. and Millson, J., Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables, Publ. Math. Inst. Hautes Études Sci. 71 (1990), 121172.CrossRefGoogle Scholar
[9]Kudla, S., Rapoport, M. and Yang, T., Modular forms and special cycles on Shimura curves, Annals of Mathematics Studies, vol. 161 (Princeton University Press, Princeton, NJ, 2006).CrossRefGoogle Scholar
[10]Serre, J.-P., A course in arithmetic, Graduate Texts in Mathematics, vol. 7 (Springer, New York, 1973).CrossRefGoogle Scholar
[11]Vogan, D. and Zuckerman, G., Unitary representations with nonzero cohomology, Compositio Math. 53 (1984), 5190.Google Scholar
[12]Waldspurger, J.-L., Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), 375484.Google Scholar
[13]Zagier, D., Modular points, modular curves, modular surfaces and modular forms, in Proc. Workshop Bonn 1984 (Bonn, 1984), Lecture Notes in Mathematics, vol. 1111 (Springer, Berlin, 1985), 225248.Google Scholar
[14]Zhang, S.-W., Gross–Zagier formula for GL2, Asian J. Math. 5 (2001), 183290.CrossRefGoogle Scholar
[15]Zhang, W., Modularity of generating functions of special cycles on Shimura varieties, PhD thesis, Columbia University (2009).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 233 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-76cb886bbf-gtgjg Total loading time: 0.5 Render date: 2021-01-21T10:42:24.090Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Gross–Kohnen–Zagier theorem over totally real fields
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Gross–Kohnen–Zagier theorem over totally real fields
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Gross–Kohnen–Zagier theorem over totally real fields
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *