Skip to main content Accessibility help
×
Home

Bounding the covolume of lattices in products

  • Pierre-Emmanuel Caprace (a1) and Adrien Le Boudec (a2)

Abstract

We study lattices in a product $G=G_{1}\times \cdots \times G_{n}$ of non-discrete, compactly generated, totally disconnected locally compact (tdlc) groups. We assume that each factor is quasi just-non-compact, meaning that $G_{i}$ is non-compact and every closed normal subgroup of $G_{i}$ is discrete or cocompact (e.g.  $G_{i}$ is topologically simple). We show that the set of discrete subgroups of $G$ containing a fixed cocompact lattice $\unicode[STIX]{x1D6E4}$ with dense projections is finite. The same result holds if $\unicode[STIX]{x1D6E4}$ is non-uniform, provided $G$ has Kazhdan’s property (T). We show that for any compact subset $K\subset G$ , the collection of discrete subgroups $\unicode[STIX]{x1D6E4}\leqslant G$ with $G=\unicode[STIX]{x1D6E4}K$ and dense projections is uniformly discrete and hence of covolume bounded away from  $0$ . When the ambient group $G$ is compactly presented, we show in addition that the collection of those lattices falls into finitely many $\operatorname{Aut}(G)$ -orbits. As an application, we establish finiteness results for discrete groups acting on products of locally finite graphs with semiprimitive local action on each factor. We also present several intermediate results of independent interest. Notably it is shown that if a non-discrete, compactly generated quasi just-non-compact tdlc group $G$ is a Chabauty limit of discrete subgroups, then some compact open subgroup of $G$ is an infinitely generated pro- $p$ group for some prime $p$ . It is also shown that in any Kazhdan group with discrete amenable radical, the lattices form an open subset of the Chabauty space of closed subgroups.

Copyright

Footnotes

Hide All

The first author is an F.R.S.-FNRS Senior Research Associate. The second author is a CNRS Researcher. This work was partially carried out when the second author was an F.R.S.-FNRS Post-Doctoral Researcher at UCLouvain. This work was partially supported by ANR-14-CE25-0004 GAMME.

Footnotes

References

Hide All
[Asc00] Aschbacher, M., Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10, second edition (Cambridge University Press, Cambridge, 2000).
[BDL16] Bader, U., Duchesne, B. and Lécureux, J., Amenable invariant random subgroups , Israel J. Math. 213 (2016), 399422; with an appendix by Phillip Wesolek.
[BFS19] Bader, U., Furman, A. and Sauer, R., An adelic arithmeticity theorem for lattices in products , Math. Z. (2019), doi:10.1007/s00209-019-02241-9.
[BS06] Bader, U. and Shalom, Y., Factor and normal subgroup theorems for lattices in products of groups , Invent. Math. 163 (2006), 415454.
[BEW11] Barnea, Y., Ershov, M. and Weigel, T., Abstract commensurators of profinite groups , Trans. Amer. Math. Soc. 363 (2011), 53815417.
[BK90] Bass, H. and Kulkarni, R., Uniform tree lattices , J. Amer. Math. Soc. 3 (1990), 843902.
[BL01] Bass, H. and Lubotzky, A., Tree lattices, Progress in Mathematics, vol. 176 (Birkhäuser, Boston, MA, 2001), with appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg and J. Tits.
[BHV08] Bekka, B., de la Harpe, P. and Valette, A., Kazhdan’s property (T), New Mathematical Monographs, vol. 11 (Cambridge University Press, Cambridge, 2008).
[Bou00] Bourdon, M., Sur les immeubles fuchsiens et leur type de quasi-isométrie , Ergodic Theory Dynam. Systems 20 (2000), 343364.
[BM00a] Burger, M. and Mozes, S., Groups acting on trees: from local to global structure , Publ. Math. Inst. Hautes Études Sci. 2001 (2000), 113150.
[BM00b] Burger, M. and Mozes, S., Lattices in product of trees , Publ. Math. Inst. Hautes Études Sci. 2001 (2000), 151194.
[BM14] Burger, M. and Mozes, S., Lattices in products of trees and a theorem of H. C. Wang , Bull. Lond. Math. Soc. 46 (2014), 11261132.
[Cap09] Caprace, P.-E., Amenable groups and Hadamard spaces with a totally disconnected isometry group , Comment. Math. Helv. 84 (2009), 437455.
[CM09] Caprace, P.-E. and Monod, N., Isometry groups of non-positively curved spaces: discrete subgroups , J. Topol. 2 (2009), 701746.
[CM11] Caprace, P.-E. and Monod, N., Decomposing locally compact groups into simple pieces , Math. Proc. Cambridge Philos. Soc. 150 (2011), 97128.
[CM12] Caprace, P.-E. and Monod, N., A lattice in more than two Kac–Moody groups is arithmetic , Israel J. Math. 190 (2012), 413444.
[CR19] Caprace, P.-E. and Radu, N., Chabauty limits of simple groups acting on trees , J. Inst. Math. Jussieu (2019), doi:10.1017/S1474748018000348.
[CRW19] Caprace, P.-E., Reid, C. and Wesolek, P., Approximating simple locally compact groups by their dense locally compact subgroups , Int. Math. Res. Not. (2019), doi:10.1093/imrn/rny298.
[CRW17] Caprace, P.-E., Reid, C. D. and Willis, G. A., Locally normal subgroups of totally disconnected groups. Part II: compactly generated simple groups , Forum Math. Sigma 5 (2017), e12.
[CW18] Caprace, P.-E. and Wesolek, P., Indicability, residual finiteness, and simple subquotients of groups acting on trees , Geom. Topol. 22 (2018), 41634204.
[Cha50] Chabauty, C., Limite d’ensembles et géométrie des nombres , Bull. Soc. Math. France 78 (1950), 143151.
[Cor15] Cornulier, Y., Commability and focal locally compact groups , Indiana Univ. Math. J. 64 (2015), 115150.
[CH16] Cornulier, Y. and de la Harpe, P., Metric geometry of locally compact groups, EMS Tracts in Mathematics, vol. 25 (European Mathematical Society (EMS), Zürich, 2016); winner of the 2016 EMS Monograph Award.
[DSMS91] Dixon, J. D., du Sautoy, M. P. F., Mann, A. and Segal, D., Analytic pro-p-groups, London Mathematical Society Lecture Note Series, vol. 157 (Cambridge University Press, Cambridge, 1991).
[Fel64] Fell, J. M. G., Weak containment and induced representations of groups. II , Trans. Amer. Math. Soc. 110 (1964), 424447.
[Fur03] Furman, A., On minimal strongly proximal actions of locally compact groups , Israel J. Math. 136 (2003), 173187.
[Fur81] Furstenberg, H., Rigidity and cocycles for ergodic actions of semisimple Lie groups (after G. A. Margulis and R. Zimmer) , in Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Mathematics, vol. 842 (Springer, Berlin–New York, 1981), 273292.
[GS10] Gartside, P. and Smith, M., Counting the closed subgroups of profinite groups , J. Group Theory 13 (2010), 4161.
[Gel04] Gelander, T., Homotopy type and volume of locally symmetric manifolds , Duke Math. J. 124 (2004), 459515.
[Gel18] Gelander, T., A lecture on invariant random subgroups , in New directions in locally compact groups, London Mathematical Society Lecture Note Series, vol. 447 (Cambridge University Press, 2018), 186204.
[GL18] Gelander, T. and Levit, A., Local rigidity of uniform lattices , Comment. Math. Helv. 93 (2018), 781827.
[GM18] Giudici, M. and Morgan, L., A theory of semiprimitive groups , J. Algebra 503 (2018), 146185.
[Gla03] Glasner, Y., A two-dimensional version of the Goldschmidt–Sims conjecture , J. Algebra 269 (2003), 381401.
[KK44] Kakutani, S. and Kodaira, K., Über das Haarsche Mass in der lokal bikompakten Gruppe , Proc. Imp. Acad. Tokyo 20 (1944), 444450.
[KM68] Kazhdan, D. A. and Margulis, G. A., A proof of Selberg’s hypothesis , Mat. Sb. (N.S.) 75 (1968), 163168.
[Kur51] Kuranishi, M., On everywhere dense imbedding of free groups in Lie groups , Nagoya Math. J. 2 (1951), 6371.
[Mar91] Margulis, G. A., Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17 (Springer, Berlin, 1991).
[MSV15] Morgan, L., Spiga, P. and Verret, G., On the order of Borel subgroups of group amalgams and an application to locally-transitive graphs , J. Algebra 434 (2015), 138152.
[PSV12] Potočnik, P., Spiga, P. and Verret, G., On graph-restrictive permutation groups , J. Combin. Theory Ser. B 102 (2012), 820831.
[Pra00] Praeger, C. E., Finite quasiprimitive group actions on graphs and designs , in Groups—Korea ’98 (Pusan) (de Gruyter, Berlin, 2000), 319331.
[Rad17] Radu, N., A classification theorem for boundary 2-transitive automorphism groups of trees , Invent. Math. 209 (2017), 160.
[Rag72] Raghunathan, M. S., Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68 (Springer, New York–Heidelberg, 1972).
[Rei18] Reid, C. D., Distal actions on coset spaces in totally disconnected, locally compact groups , J. Topol. Anal. (2018), to appear.
[Sha00] Shalom, Y., Rigidity of commensurators and irreducible lattices , Invent. Math. 141 (2000), 154.
[Spi11] Spiga, P., On G-locally primitive graphs of locally twisted wreath type and a conjecture of Weiss , J. Combin. Theory Ser. A 118 (2011), 22572260.
[Spi16] Spiga, P., An application of the local C (G, T) theorem to a conjecture of Weiss , Bull. Lond. Math. Soc. 48 (2016), 1218.
[SV14] Spiga, P. and Verret, G., On intransitive graph-restrictive permutation groups , J. Algebraic Combin. 40 (2014), 179185.
[Tit64] Tits, J., Automorphismes à déplacement borné des groupes de Lie , Topology 3 (1964), 97107.
[Tit70] Tits, J., Sur le groupe des automorphismes d’un arbre , in Essays on topology and related topics: Mémoires dédiés à Georges de Rham (Springer, New York, 1970), 188211.
[Tor18] Tornier, S., Groups acting on trees and contributions to Willis theory, PhD thesis, ETH Zürich (2018).
[Tro85] Trofimov, V. I., Groups of automorphisms of graphs as topological groups , Mat. Zametki 38 (1985), 378385, 476.
[TW95] Trofimov, V. I. and Weiss, R. M., Graphs with a locally linear group of automorphisms , Math. Proc. Cambridge Philos. Soc. 118 (1995), 191206.
[Wan67] Wang, H. C., On a maximality property of discrete subgroups with fundamental domain of finite measure , Amer. J. Math. 89 (1967), 124132.
[Wan72] Wang, H. C., Topics on totally discontinuous groups , in Symmetric spaces, Pure and Applied Mathematics, vol. 8 (Dekker, New York, 1972), 459487.
[Wan75] Wang, S. P., On isolated points in the dual spaces of locally compact groups , Math. Ann. 218 (1975), 1934.
[Wei79] Weiss, R., An application of p-factorization methods to symmetric graphs , Math. Proc. Cambridge Philos. Soc. 85 (1979), 4348.
[Wei78] Weiss, R., s-transitive graphs , in Algebraic methods in graph theory, Vols. I, II (Szeged 1978), Colloquia Mathematica Societatis János Bolyai, vol. 25 (North-Holland, Amsterdam–New York, 1981), 827847.
[Zas38] Zassenhaus, H., Beweis eines Satzes über diskrete Gruppen , Abh. Math. Semin. Univ. Hambg. 12 (1938), 289312.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Bounding the covolume of lattices in products

  • Pierre-Emmanuel Caprace (a1) and Adrien Le Boudec (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed