[Asc00]
Aschbacher, M., Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10, second edition (Cambridge University Press, Cambridge, 2000).
[BDL16]
Bader, U., Duchesne, B. and Lécureux, J.,
Amenable invariant random subgroups
, Israel J. Math.
213 (2016), 399–422; with an appendix by Phillip Wesolek.
[BFS19]
Bader, U., Furman, A. and Sauer, R.,
An adelic arithmeticity theorem for lattices in products
, Math. Z. (2019), doi:10.1007/s00209-019-02241-9. [BS06]
Bader, U. and Shalom, Y.,
Factor and normal subgroup theorems for lattices in products of groups
, Invent. Math.
163 (2006), 415–454.
[BEW11]
Barnea, Y., Ershov, M. and Weigel, T.,
Abstract commensurators of profinite groups
, Trans. Amer. Math. Soc.
363 (2011), 5381–5417.
[BK90]
Bass, H. and Kulkarni, R.,
Uniform tree lattices
, J. Amer. Math. Soc.
3 (1990), 843–902.
[BL01]
Bass, H. and Lubotzky, A., Tree lattices, Progress in Mathematics, vol. 176 (Birkhäuser, Boston, MA, 2001), with appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg and J. Tits.
[BHV08]
Bekka, B., de la Harpe, P. and Valette, A., Kazhdan’s property (T), New Mathematical Monographs, vol. 11 (Cambridge University Press, Cambridge, 2008).
[Bou00]
Bourdon, M.,
Sur les immeubles fuchsiens et leur type de quasi-isométrie
, Ergodic Theory Dynam. Systems
20 (2000), 343–364.
[BM00a]
Burger, M. and Mozes, S.,
Groups acting on trees: from local to global structure
, Publ. Math. Inst. Hautes Études Sci.
2001 (2000), 113–150.
[BM00b]
Burger, M. and Mozes, S.,
Lattices in product of trees
, Publ. Math. Inst. Hautes Études Sci.
2001 (2000), 151–194.
[BM14]
Burger, M. and Mozes, S.,
Lattices in products of trees and a theorem of H. C. Wang
, Bull. Lond. Math. Soc.
46 (2014), 1126–1132.
[Cap09]
Caprace, P.-E.,
Amenable groups and Hadamard spaces with a totally disconnected isometry group
, Comment. Math. Helv.
84 (2009), 437–455.
[CM09]
Caprace, P.-E. and Monod, N.,
Isometry groups of non-positively curved spaces: discrete subgroups
, J. Topol.
2 (2009), 701–746.
[CM11]
Caprace, P.-E. and Monod, N.,
Decomposing locally compact groups into simple pieces
, Math. Proc. Cambridge Philos. Soc.
150 (2011), 97–128.
[CM12]
Caprace, P.-E. and Monod, N.,
A lattice in more than two Kac–Moody groups is arithmetic
, Israel J. Math.
190 (2012), 413–444.
[CR19]
Caprace, P.-E. and Radu, N.,
Chabauty limits of simple groups acting on trees
, J. Inst. Math. Jussieu (2019), doi:10.1017/S1474748018000348. [CRW19]
Caprace, P.-E., Reid, C. and Wesolek, P.,
Approximating simple locally compact groups by their dense locally compact subgroups
, Int. Math. Res. Not. (2019), doi:10.1093/imrn/rny298. [CRW17]
Caprace, P.-E., Reid, C. D. and Willis, G. A.,
Locally normal subgroups of totally disconnected groups. Part II: compactly generated simple groups
, Forum Math. Sigma
5 (2017), e12.
[CW18]
Caprace, P.-E. and Wesolek, P.,
Indicability, residual finiteness, and simple subquotients of groups acting on trees
, Geom. Topol.
22 (2018), 4163–4204.
[Cha50]
Chabauty, C.,
Limite d’ensembles et géométrie des nombres
, Bull. Soc. Math. France
78 (1950), 143–151.
[Cor15]
Cornulier, Y.,
Commability and focal locally compact groups
, Indiana Univ. Math. J.
64 (2015), 115–150.
[CH16]
Cornulier, Y. and de la Harpe, P., Metric geometry of locally compact groups, EMS Tracts in Mathematics, vol. 25 (European Mathematical Society (EMS), Zürich, 2016); winner of the 2016 EMS Monograph Award.
[DSMS91]
Dixon, J. D., du Sautoy, M. P. F., Mann, A. and Segal, D., Analytic pro-p-groups, London Mathematical Society Lecture Note Series, vol. 157 (Cambridge University Press, Cambridge, 1991).
[Fel64]
Fell, J. M. G.,
Weak containment and induced representations of groups. II
, Trans. Amer. Math. Soc.
110 (1964), 424–447.
[Fur03]
Furman, A.,
On minimal strongly proximal actions of locally compact groups
, Israel J. Math.
136 (2003), 173–187.
[Fur81]
Furstenberg, H.,
Rigidity and cocycles for ergodic actions of semisimple Lie groups (after G. A. Margulis and R. Zimmer)
, in Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Mathematics, vol. 842 (Springer, Berlin–New York, 1981), 273–292.
[GS10]
Gartside, P. and Smith, M.,
Counting the closed subgroups of profinite groups
, J. Group Theory
13 (2010), 41–61.
[Gel04]
Gelander, T.,
Homotopy type and volume of locally symmetric manifolds
, Duke Math. J.
124 (2004), 459–515.
[Gel18]
Gelander, T.,
A lecture on invariant random subgroups
, in New directions in locally compact groups, London Mathematical Society Lecture Note Series, vol. 447 (Cambridge University Press, 2018), 186–204.
[GL18]
Gelander, T. and Levit, A.,
Local rigidity of uniform lattices
, Comment. Math. Helv.
93 (2018), 781–827.
[GM18]
Giudici, M. and Morgan, L.,
A theory of semiprimitive groups
, J. Algebra
503 (2018), 146–185.
[Gla03]
Glasner, Y.,
A two-dimensional version of the Goldschmidt–Sims conjecture
, J. Algebra
269 (2003), 381–401.
[KK44]
Kakutani, S. and Kodaira, K.,
Über das Haarsche Mass in der lokal bikompakten Gruppe
, Proc. Imp. Acad. Tokyo
20 (1944), 444–450.
[KM68]
Kazhdan, D. A. and Margulis, G. A.,
A proof of Selberg’s hypothesis
, Mat. Sb. (N.S.)
75 (1968), 163–168.
[Kur51]
Kuranishi, M.,
On everywhere dense imbedding of free groups in Lie groups
, Nagoya Math. J.
2 (1951), 63–71.
[Mar91]
Margulis, G. A., Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17 (Springer, Berlin, 1991).
[MSV15]
Morgan, L., Spiga, P. and Verret, G.,
On the order of Borel subgroups of group amalgams and an application to locally-transitive graphs
, J. Algebra
434 (2015), 138–152.
[PSV12]
Potočnik, P., Spiga, P. and Verret, G.,
On graph-restrictive permutation groups
, J. Combin. Theory Ser. B
102 (2012), 820–831.
[Pra00]
Praeger, C. E.,
Finite quasiprimitive group actions on graphs and designs
, in Groups—Korea ’98 (Pusan) (de Gruyter, Berlin, 2000), 319–331.
[Rad17]
Radu, N.,
A classification theorem for boundary 2-transitive automorphism groups of trees
, Invent. Math.
209 (2017), 1–60.
[Rag72]
Raghunathan, M. S., Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68 (Springer, New York–Heidelberg, 1972).
[Rei18]
Reid, C. D.,
Distal actions on coset spaces in totally disconnected, locally compact groups
, J. Topol. Anal. (2018), to appear.
[Sha00]
Shalom, Y.,
Rigidity of commensurators and irreducible lattices
, Invent. Math.
141 (2000), 1–54.
[Spi11]
Spiga, P.,
On G-locally primitive graphs of locally twisted wreath type and a conjecture of Weiss
, J. Combin. Theory Ser. A
118 (2011), 2257–2260.
[Spi16]
Spiga, P.,
An application of the local C (G, T) theorem to a conjecture of Weiss
, Bull. Lond. Math. Soc.
48 (2016), 12–18.
[SV14]
Spiga, P. and Verret, G.,
On intransitive graph-restrictive permutation groups
, J. Algebraic Combin.
40 (2014), 179–185.
[Tit64]
Tits, J.,
Automorphismes à déplacement borné des groupes de Lie
, Topology
3 (1964), 97–107.
[Tit70]
Tits, J.,
Sur le groupe des automorphismes d’un arbre
, in Essays on topology and related topics: Mémoires dédiés à Georges de Rham (Springer, New York, 1970), 188–211.
[Tor18]
Tornier, S., Groups acting on trees and contributions to Willis theory, PhD thesis, ETH Zürich (2018).
[Tro85]
Trofimov, V. I.,
Groups of automorphisms of graphs as topological groups
, Mat. Zametki
38 (1985), 378–385, 476.
[TW95]
Trofimov, V. I. and Weiss, R. M.,
Graphs with a locally linear group of automorphisms
, Math. Proc. Cambridge Philos. Soc.
118 (1995), 191–206.
[Wan67]
Wang, H. C.,
On a maximality property of discrete subgroups with fundamental domain of finite measure
, Amer. J. Math.
89 (1967), 124–132.
[Wan72]
Wang, H. C.,
Topics on totally discontinuous groups
, in Symmetric spaces, Pure and Applied Mathematics, vol. 8 (Dekker, New York, 1972), 459–487.
[Wan75]
Wang, S. P.,
On isolated points in the dual spaces of locally compact groups
, Math. Ann.
218 (1975), 19–34.
[Wei79]
Weiss, R.,
An application of p-factorization methods to symmetric graphs
, Math. Proc. Cambridge Philos. Soc.
85 (1979), 43–48.
[Wei78]
Weiss, R.,
s-transitive graphs
, in Algebraic methods in graph theory, Vols. I, II (Szeged 1978), Colloquia Mathematica Societatis János Bolyai, vol. 25 (North-Holland, Amsterdam–New York, 1981), 827–847.
[Zas38]
Zassenhaus, H.,
Beweis eines Satzes über diskrete Gruppen
, Abh. Math. Semin. Univ. Hambg.
12 (1938), 289–312.