Skip to main content Accessibility help
×
Home

Algebraic and topological aspects of the schematization functor

  • L. Katzarkov (a1), T. Pantev (a2) and B. Toën (a3)

Abstract

We study some basic properties of schematic homotopy types and the schematization functor. We describe two different algebraic models for schematic homotopy types, namely cosimplicial Hopf alegbras and equivariant cosimplicial algebras, and provide explicit constructions of the schematization functor for each of these models. We also investigate some standard properties of the schematization functor that are helpful for describing the schematization of smooth projective complex varieties. In a companion paper, these results are used in the construction of a non-abelian Hodge structure on the schematic homotopy type of a smooth projective variety.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Algebraic and topological aspects of the schematization functor
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Algebraic and topological aspects of the schematization functor
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Algebraic and topological aspects of the schematization functor
      Available formats
      ×

Copyright

References

Hide All
[1]Anderson, M. P., Exactness properties of profinite completion functors, Topology 13 (1974), 229239.
[2]Artin, M., Grothendieck, A. and Verdier, J. L., Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Lecture Notes in Mathematics, vol. 269 (Springer, Berlin, 1972).
[3]Beilinson, A., On the derived category of perverse sheaves, in K -theory, arithmetic and geometry, Lecture Notes in Mathematics, vol. 1289 (Springer, Berlin, 1987), 240–264.
[4]Beke, T., Sheafifiable homotopy model categories, Math. Proc. Cambridge Philos. Soc. 129 (2000), 447475.
[5]Blander, B., Local projective model structure on simplicial presheaves, K-theory 24 (2001), 283301.
[6]Bousfield, A. K. and Gugenheim, V. K. A. M., On PL DeRham theory and rational homotopy type, Mem. Amer. Math. Soc. 179 (1976).
[7]Bousfield, A. K. and Kan, D. M., Homotopy limits, completions and localizations, Lecture Notes in Mathematics, vol. 304 (Springer, Berlin, New York, 1972).
[8]Brown, E. H. and Szczarba, R. H., Rational and real homotopy theory with arbitrary fundamental groups, Duke Math. J. 71 (1993), 299316.
[9]Demazure, M. and Gabriel, P., Groupes algébriques, I (Masson/North-Holland, Paris, 1970).
[10]Demazure, M. and Grothendieck, A., Schémas en groupes I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, vol. 151 (Springer, Berlin, 1970).
[11]Goerss, P. and Jardine, J. F., Simplicial homotopy theory, Progress in Mathematics, vol. 174 (Birkhäuser, Basel, 1999).
[12]Hinich, V. A. and Schechtman, V. V., Homotopy limits of homotopy algebras in K -theory, arithmetic and geometry, Lecture Notes in Mathematics, vol. 1289 (Springer, Berlin, 1987), 240–264.
[13]Hirschhorn, P., Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99 (American Mathematical Society, Providence, RI, 2003).
[14]Hovey, M., Model categories, Mathematical Surveys and Monographs, vol. 63 (American Mathematical Society, Providence, RI, 1998).
[15]Jardine, J. F., Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), 3587.
[16]Katzarkov, L., Pantev, T. and Toën, B., Schematic homotopy types and non-abelian Hodge theory, Compos. Math. 144 (2008), 582632.
[17]Kriz, I., p-adic homotopy theory, Topol. Appl. 52 (1993), 279308.
[18]Maclane, S., Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5 (Springer, New York, Berlin, 1971).
[19]May, J. P., Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, vol. 11 (D. Van Nostrand Co., Princeton, Toronto, London, 1967).
[20]Pridham, J. P., Pro-algebraic homotopy types, Proc. Lond. Math. Soc. (3) 97 (2008), 273338.
[21]Pridham, J. P., Galois actions on homotopy groups, Preprint (2007), arXiv:0712.0928.
[22]Pridham, J. P., Non-abelian real Hodge theory for proper varieties, Preprint (2006), arXiv:math/0611686.
[23]Quillen, D., Homotopical algebra, Lecture Notes in Mathematics, vol. 43 (Springer, Berlin, 1967).
[24]Serre, J. P., Cohomologie Galoisienne, Lecture Notes in Mathematics, fifth edition, vol. 5 (Springer, Berlin, 1994).
[25]Simpson, C., Secondary Kodaira-Spencer classes and non-abelian Dolbeault cohomology, Preprint (1997), arXiv:alg-geom/9712020.
[26]Schwede, S. and Shipley, B., Algebras and modules in monoidal model categories, Proc. London Math. Soc. (3) 80 (2000), 491511.
[27]Sullivan, D., Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269331.
[28]Tanré, D., Homotopie rationnelle: Modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics, vol. 1025 (Springer, Berlin, 1983).
[29]Toën, B., Champs affines, Selecta Math. (N.S.) 12 (2006), 39135.
[30]Toën, B., Vers une interprétation Galoisienne de la théorie de l’homotopie, Cahiers de Top. et Géom. Diff. Cat. 43 (2002), 257312.
[31]Toën, B. and Vezzosi, G., Homotopy algebraic geometry I: Topos theory, Adv. Math. 193 (2005), 257372.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

Algebraic and topological aspects of the schematization functor

  • L. Katzarkov (a1), T. Pantev (a2) and B. Toën (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.