Skip to main content Accessibility help

Vlasov-Fokker-Planck Simulations for High-Power Laser-Plasma Interactions

  • Su-Ming Weng (a1) (a2), Zheng-Ming Sheng (a1) (a3), Hui Xu (a4) and Jie Zhang (a1) (a3)


A review is presented on our recent Vlasov-Fokker-Planck (VFP) simulation code development and applications for high-power laser-plasma interactions. Numerical schemes are described for solving the kinetic VFP equation with both electron-electron and electron-ion collisions in one-spatial and two-velocity (1D2V) coordinates. They are based on the positive and flux conservation method and the finite volume method, and these two methods can insure the particle number conservation. Our simulation code can deal with problems in high-power laser/beam-plasma interactions, where highly non-Maxwellian electron distribution functions usually develop and the widely-used perturbation theories with the weak anisotropy assumption of the electron distribution function are no longer in point. We present some new results on three typical problems: firstly the plasma current generation in strong direct current electric fields beyond Spitzer-Härm’s transport theory, secondly the inverse bremsstrahlung absorption at high laser intensity beyond Langdon’s theory, and thirdly the heat transport with steep temperature and/or density gradients in laser-produced plasma. Finally, numerical parameters, performance, the particle number conservation, and the energy conservation in these simulations are provided.


Corresponding author



Hide All
[1]Spitzer, L. and Härm, R., Transport phenomena in a completely ionized gas, Phys. Rev., 89(1953), 977981.
[2]Langdon, A. B., Nonlinear inverse bremsstrahlung and heated-electron distributions, Phys. Rev. Lett., 44(1980), 575579.
[3]Filbet, F., Sonnendrücker, E. and Bertrand, P., Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172(2001), 166187.
[4]Fijalkow, E., A numerical solution to the Vlasov equation, Comput. Phys. Commun., 116(1999), 319328.
[5]Weng, S. M., Sheng, Z. M., He, M. Q., Wu, H. C., Dong, Q. L., and Zhang, J., Inverse bremsstrahlung absorption and the evolution of electron distributions accounting for electron-electron collisions, Phys. Plasmas, 13(2006), 113302.
[6]Karney, C. F. F., Fokker-Planck and quasilinear codes, Comput. Phys. Rep., 4(1986), 183244.
[7]Trubnikov, B. A., Particle imteractions in a fully ionized plasma, Reviews of Plasma Physics, 1(1965), 105204.
[8]Chacón, L., Barnes, D. C., Knoll, D. A. and Miley, G. H., An implicit energy-conservative 2D Fokker-Planck algorithm: I. Difference scheme, J. Comput. Phys., 157(2000), 618653.
[9]Chang, J. S. and Cooper, G., A practical difference scheme for Fokker-Planck equations, J. Comput. Phys., 6(1970), 116.
[10]Marchuk, G. I., Methods of numerical mathematics, Springer-Verlag, New York, 1975.
[11]Benage, J. F., Shanahan, W. R., and Murillo, M. S., Electrical resistivity measurements of hot dense aluminum, Phys. Rev. Lett., 83(1999), 29532956; Lencioni, D. E., Measurement of plasma conductivity for electric fields larger than the runaway field, Phys. Fluids, 14(1971), 566569; Hui, B. H., Winsor, N. K., and Coppi, B., Collisional theory of electrical resistivity in trapped electron regimes, Phys. Fluids, 20(1977), 12751278.
[12]Shkarofsky, I. P., Shoucri, M. M., and Fuchs, V., Numerical solution of the Fokker-Planck equation with a dc electric field, Comput. Phys. Commun., 71(1992), 269284.
[13]Shkarofsky, I. P., Johnston, T. W., and Bachynski, M. P., The particle kinetics of plasma, Addison-Wesley, Reading, Mass., 1966
[14]Weng, S. M., Sheng, Z. M., He, M. Q., Zhang, J., Norreys, P. A., Sherlock, M., and Robinson, A. P. L., Plasma currents and electron distribution functions under a dc electric field of arbitrary strength, Phys. Rev. Lett., 100(2008), 185001.
[15]Dreicer, H., Electron and ion runaway in a fully ionized gas. I, Phys. Rev., 115(1959), 238249;
Dreicer, H., Electron and ion runaway in a fully ionized gas. II, Phys. Rev., 115(1960), 329342.
[16]Goldston, R. J. and Rutherford, P. H., Introduction to plasma physics, Institute of Physics Publishing, Bristol, 1995.
[17]Meyer-ter-Vehn, al., On electron transport in fast ignition research and the use of few-cycle PW-range laser pulses, Plasma Phys. Controlled Fusion, 47(2005), B807B813.
[18]Honrubia, J. J. and Meyer-ter-Vehn, J., Three-dimensional fast electron transport for ignition-scale inertial fusion capsules, Nucl. Fusion, 46(2006), L25L28.
[19]Pert, G. J., Inverse bremsstrahlung in strong radiation fields at low temperatures, Phys. Rev. E, 51(1995), 47784789.
[20]Betti, R., Zhou, C.D., Anderson, K. al., Shock ignition of thermonuclear fuel with high areal density, Phys. Rev. Lett., 98(2007), 155001;
Perkins, L. J., Betti, R., LaFortune, K. N., and Williams, W. H., Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility, Phys. Rev. Lett., 103(2009), 045004;
Ribeyre, X, Schurtz, G, Lafon, M, Galera, S and Weber, S, Shock ignition: an alternative scheme for HiPER, Plasma Phys. Control. Fusion, 51(2009), 015013.
[21]Murakami, M. and Nagatomo, H., A new twist for inertial fusion energy: Impact ignition, Nucl. Inst. and Meth. in Phys. Res. A, 544(2005), 67;
Murakami, M., Nagatomo, H., Azechi, H., Ogando, F., and Eliezer, S., Innovative ignition scheme for ICF-impact fast ignition, Nucl. Fu sion, 46(2006), 99; Karasik, M., Weaver, J. L., Aglitskiy, al., Acceleration to high velocities and heating by impact using Nike KrF laser, Phys. Plasmas, 17(2010), 056317.
[22]Ping, Y., Shepherd, R., Lasinski, B. al., Absorption of short laser pulses on solid targets in the ultrarelativistic regime, Phys. Rev. Lett., 100(2008), 085004.
[23]Gibbon, P., Short pulse laser interactions with matter, Imperial College Press, London, 2005.
[24]Wilks, S. C. and Kruer, W. L., Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas, IEEE J. Quantum Electron., 33(1997), 1954.
[25]Price, D. F., More, R.M., Walling, R. al., Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1ł1000 eV, Phys. Rev. Lett., 75(1995), 252.
[26]Ridgers, C. P., Kingham, R. J., and Thomas, A. G. R., Magnetic cavitation and the reemergence of nonlocal transport in laser plasmas, Phys. Rev. Lett., 100(2008), 075003.
[27]Weng, S. M., Sheng, Z. M., and Zhang, J., Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-Maxwellian distribution, Phys. Rev. E, 80(2009), 056406.
[28]Mulser, P., Cornolti, F., Bésuelle, E., and Schneider, R., Time-dependent electron-ion collision frequency at arbitrary laser intensity-temperature ratio, Phys. Rev. E, 63(2000), 016406.
[29]Bésuelle, E., Salomaa, R. R. E., and Teychenné, D., Coulomb logarithm in femtosecond-laser-matter interaction, Phys. Rev. E, 60(1999), 22602263.
[30]David, N., Spence, D. J., and Hooker, S. M., Molecular-dynamic calculation of the inverse-bremsstrahlung heating of non-weakly-coupled plasmas, Phys. Rev. E, 70(2004), 056411.
[31]Bell, A. R. and Kingham, R. J., Resistive collimation of electron beams in laser-produced plasmas, Phys. Rev. Lett., 91(2003), 035003; and reference therein.
[32]Bell, A. R., Electron energy transport in ion waves and its relevance to laser-produced plasmas, Phys. Fluids, 26(1983), 279284.
[33]Yu, Q. Z., Li, Y. T., Weng, S. M., Dong, Q. L., Liu, F., Zhang, Z., Zhao, J., Lu, X., Danson, C., Pepler, D., Jiang, X. H., Liu, Y. G., Huang, L. Z., Liu, S. Y., Ding, Y. K., Wang, Z. B., Gu, Y., He, X. T., Sheng, Z. M., and Zhang, J., Nonlocal heat transport in laser-produced aluminum plasmas, Phys. Plasmas, 17(2010), 043106.
[34]Fabbro, R., Max, C. and Fabre, E., Planar laser-driven ablation: Effect of inhibited electron thermal conduction, Phys. Fluids, 28(1985), 14631481.
[35]Hawreliak, J., Chambers, D. M., Glenzer, S. H., Gouveia, A., Kingham, R. J., R. S. Marjorib-anks, Pinto, P. A., Renner, O., Soundhauss, P., Topping, S., Wolfrum, E., Young, P. E., and Wark, J. S., Thomson scattering measurements of heat flow in a laser-produced plasma, J. Phys. B, 37(2004), 15411551.
[36]Malone, R. C., McCrory, R. L. and Morse, R. L., Indications of strongly flux-limited electron thermal conduction in laser-target experiments, Phys. Rev. Lett., 34(1975), 721724.
[37]Bell, A. R., Evans, R. and Nicholas, D. J., Elecron energy transport in steep temperature gradients in laser-produced plasmas, Phys. Rev. Lett., 46(1981), 243246.
[38]Luciani, J. F. and Mora, P., Nonlocal heat transport due to steep temperature gradients, Phys. Rev. Lett., 51(1983), 16641667;
Schurtz, G. P., Nicoläı, Ph. D., and Busquet, M., A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes, Phys. Plasmas, 7(2000), 4238.
[39]Albritton, J. R., Williams, E. A., and Bernstein, I. B., Nonlocal electron heat transport by not quite Maxwell-Boltzmann distributions, Phys. Rev. Lett., 57(1986), 18871890.
[40]Kishimoto, Y., Mima, K., and Haines, M. G., An extension of Spitzer-Härm theory on thermal transport to steep temperature gradient case. II. Integral representation, J. Phys. Soc. Jpn., 57(1988), 19721986.
[41]Goncharov, V. N., Gotchev, O. V., and Vianello, E., Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution, Phys. Plasmas, 13(2006), 012702.
[42]Christiansen, J. P., Ashby, D. E. T. F. and Roberts, K. V., MEDUSA a one-dimensional laser fusion code, Comput. Phys. Commun., 7(1974), 271287.


Vlasov-Fokker-Planck Simulations for High-Power Laser-Plasma Interactions

  • Su-Ming Weng (a1) (a2), Zheng-Ming Sheng (a1) (a3), Hui Xu (a4) and Jie Zhang (a1) (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed