Skip to main content Accessibility help
×
Home

A Symmetric Direct Discontinuous Galerkin Method for the Compressible Navier-Stokes Equations

Abstract

In this work, we investigate the numerical approximation of the compressible Navier-Stokes equations under the framework of discontinuous Galerkin methods. For discretization of the viscous and heat fluxes, we extend and apply the symmetric direct discontinuous Galerkin (SDDG) method which is originally introduced for scalar diffusion problems. The original compressible Navier-Stokes equations are rewritten into an equivalent form via homogeneity tensors. Then, the numerical diffusive fluxes are constructed from the weak formulation of primal equations directly without converting the second-order equations to a first-order system. Additional numerical flux functions involving the jump of second order derivative of test functions are added to the original direct discontinuous Galerkin (DDG) discretization. A number of numerical tests are carried out to assess the practical performance of the SDDG method for the two dimensional compressible Navier-Stokes equations. These numerical results obtained demonstrate that the SDDG method can achieve the optimal order of accuracy. Especially, compared with the well-established symmetric interior penalty (SIP) method [18], the SDDG method can maintain the expected optimal order of convergence with a smaller penalty coefficient.

Copyright

Corresponding author

*Corresponding author. Email addresses: yuehq@buaa.edu.cn (H. Yue), chengjian@buaa.edu.cn (J. Cheng), liutg@buaa.edu.cn (T. Liu)

Footnotes

Hide All

Communicated by Chi-Wang Shu

Footnotes

References

Hide All
[1] Arnold, D.N.. An interior penalty finite elementmethod with discontinuous elements. SIAM J. Numer. Anal, 19(4):742760, 1982.
[2] Bassi, F., Crivellini, A., Rebay, S., and Savini, M.. Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations. Comput. Fluids, 34(4):507540, 2005.
[3] Bassi, F. and Rebay, S.. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys., 131(2):267279, 1997.
[4] Cao, W., Liu, H., and Zhang, Z.. Superconvergence of the direct discontinuous Galerkin method for convection-diffusion equations. Numer. Methods Part. Diff. Eqns., 2016.
[5] Cheng, J., Liu, X., Liu, T., and Luo, H.. A parallel, high-order direct discontinuous Galerkin method for the Navier-Stokes equations on 3D hybrid grids. Commun. Comput. Phys., to appear, 2017.
[6] Cheng, J., Liu, X., Yang, X., Liu, T., and Luo, H.. A direct discontinuous galerkin method for computation of turbulent flows on hybrid grids. Number AIAA-2016-3333, 2016.
[7] Cheng, J., Yang, X., Liu, X., Liu, T., and Luo, H.. A direct discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids. J. Comput. Phys., 327:484502, 2016.
[8] Cockburn, B.. Discontinuous Galerkin Methods for Computational Fluid Dynamics. John Wiley & Sons, Ltd, 2004.
[9] Cockburn, B., Gopalakrishnan, J., and Lazarov, R.. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal, 47(2):13191365, 2009.
[10] Cockburn, B., Hou, S., and Shu, C.-W.. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput., 54(190):545581, 1990.
[11] Cockburn, B., Lin, S.-Y., and Shu, C.-W.. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems. J. Comput. Phys., 84(1):90113, 1989.
[12] Cockburn, B. and Shu, C.-W.. TVB Runge-Kutta local projection discontinuous Galerkin finite elementmethod for conservation laws. II. General framework. Math. Comp., 52(186):411435, 1989.
[13] Cockburn, B. and Shu, C.-W.. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal, 35(6):24402463, 1998.
[14] Cockburn, B. and Shu, C.-W.. The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys., 141(2):199224, 1998.
[15] Douglas, J. and Dupont, T.. Interior penalty procedures for elliptic and parabolic Galerkin methods. In Computing Methods in Applied Sciences, pages 207216. Springer, 1976.
[16] Gautier, R., Biau, D., and Lamballais, E.. A reference solution of the flow over a circular cylinder at Re = 40. Comput. Fluids, 75:103111, 2013.
[17] Hartmann, R. and Houston, P.. Symmetric Interior Penalty DG Methods for the Compressible Navier–Stokes Equations I: Method Formulation. Int. J. Num. Anal. Model., 3(1):120, 2006.
[18] Hartmann, R. and Houston, P.. An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier–Stokes equations. J. Comput. Phys., 227(22):96709685, 2008.
[19] Huang, H., Chen, Z., Li, J., and Yan, J.. Direct discontinuous Galerkin method and its variations for second order elliptic equations. J. Sci. Comput., (DOI 10.1007/s10915-016-0264-z):122, 2016.
[20] Liu, H.. Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations. Math. Comp., 84(295):22632295, 2015.
[21] Liu, H. and Yan, J.. The direct discontinuous Galerkin (DDG)methods for diffusion problems. SIAM J. Numer. Anal, 47(1):675698, 2009.
[22] Liu, H. and Yan, J.. The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys., 8(3):541, 2010.
[23] Luo, H., Luo, L., Nourgaliev, R., Mousseau, V.A., and Dinh, N.. A reconstructed discontinuous Galerkinmethod for the compressible Navier–Stokes equations on arbitrary grids. J. Comput. Phys., 229(19):69616978, 2010.
[24] Peraire, J., Nguyen, N.C., and Cockburn, B.. A hybridizable discontinuous Galerkin method for the compressible Euler and Navier-Stokes equations. AIAA paper, 363:2010, 2010.
[25] Peraire, J. and Persson, P.-O.. The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput., 30(4):18061824, 2008.
[26] Reed, W.H. and Hill, T.R.. Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479, 1973.
[27] Shu, C.-W.. Different formulations of the discontinuous Galerkin method for the viscous terms. Advances in Scientific Computing, pages 144155, 2001.
[28] Toro, E.F.. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media, 2013.
[29] Vidden, C. and Yan, J.. A new direct discontinuous Galerkin method with symmetric structure for nonlinear diffusion equations. J. Comput. Math, 31(6):638662, 2013.

Keywords

MSC classification

Related content

Powered by UNSILO

A Symmetric Direct Discontinuous Galerkin Method for the Compressible Navier-Stokes Equations

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.