Skip to main content Accessibility help
×
Home

A Priori and a Posteriori Error Estimates for H(div)-Elliptic Problem with Interior Penalty Method

  • Yuping Zeng and Jinru Chen

Abstract

In this paper, we propose and analyze the interior penalty discontinuous Galerkin method for H(div)-elliptic problem. An optimal a priori error estimate in the energy norm is proved. In addition, a residual-based a posteriori error estimator is obtained. The estimator is proved to be both reliable and efficient in the energy norm. Some numerical testes are presented to demonstrate the effectiveness of our method.

Copyright

Corresponding author

Corresponding author.Email:jrchen@njnu.edu.cn

References

Hide All
[1]Ainsworth, M., A posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal., 45(2007), 17771798.
[2]Ainsworth, M. and Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis, Wiley-Interscience, JohnWiley & Sons, New York, 2000.
[3]Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19(1982), 742760.
[4]Arnold, D. N., Brezzi, F., Cockburn, B. and Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39(2002), 17491779.
[5]Arnold, D. N., Falk, R. S. and Winther, R., Multigrid preconditioning in H(div) and application, Math. Comp., 66(1997), 957984.
[6]Babuska, I. and Strouboulis, T., The Finite Element Method and its Reliability, Clarendon Press, Oxford University Press, New York, 2001.
[7]Becker, R., Hansbo, P. and Larson, M., Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 192(2003), 723733.
[8]Beck, R., Hiptmair, R., Hoppe, R. H. W. and Wohlmuth, B. I., Residual based a-posteriori error estimators for eddy current computation, M2AN. Math. Model. Numer. Anal., 34(2000), 159182.
[9]Brenner, S. C. and Scott, L. R., The Mathematical Theory of Finite Element Methods (3nd edn), Springer-Verlag, New York/Berlin/Heidelberg, 2008.
[10]Brezzi, F., Douglas, J. and Marini, L. D., Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47(1985), 217235.
[11]Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.
[12]Cai, Z., Lazarov, R., Manteuffel, T. and McCormick, S., First-order system least-squares for partial differential equations, Part I. SIAM J. Numer. Anal., 31(1994), 17851799.
[13]Cascon, J. M., Nochetto, R. H. and Siebert, K. G., Design and convergence of AFM in H(div), Math. Models Methods Appl. Sci., 17(2007), 18491881.
[14]Chen, L. and Zhang, C., A MATLAB Package of Adaptive Finite Element Methods, Technical report, University of Maryland, College Park, MD, 2006.
[15]Ciarlet, P., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[16]Cleément, P., Approximation by finite element functions using local regularization,RAIRO Anal. Numér., 2(1975), 7784.
[17]Cockburn, B., Karniadakis, G.E. and Shu, C.W. (Eds.), Discontinuous Galerkin Methods-Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering 11. Springer-Verlag, New York, 2000.
[18]Girault, V. and Raviart, P. A., Finite element methods for Navier-Stokes equations, Springer-Verlag, New York, 1986.
[19]Hiptmair, R. and Xu, J., Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal., 45(2007), 24832509.
[20]Houston, P., Perugia, I., Schneebeli, A. and Schoätzau, D., Interior penaltymethod for the indefinite time-harmonic Maxwell equations. Numer. Math., 100(2005), 485518.
[21]Houston, P., Perugia, I. and Schoätzau, D., An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations, IMA J. Numer. Anal., 27 (2007), 122150.
[22]Houston, P., Schoätzau, D. and Wihler, T. P., Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems, Math. Models Methods Appl. Sci. 17 (2007), 3362.
[23]Karakashian, O. A. and Pascal, F., A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41 (2003), 23742399.
[24]Lin, P., A sequential regularization method for time-dependent incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 34 (1997), 10511071.
[25]Monk, P., Finite Element Methods for Maxwell’s Equation, Oxford University press, New York, 2003.
[26]Neédélec, J. C., Mixed finite elements in R 3, Numer. Math., 35(1980), 315341.
[27]Neédélec, J. C., A new family of mixed finite elements in R 3, Numer. Math., 50(1986), 5781.
[28]Neittaanmaäki, P. and Repin, S., Reliable Methods for Mathematical Modelling. Error Control and a Posteriori Estimates, Elsevier, New York, 2004.
[29]Perugia, I. and Schoätzau, D., The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comp., 72(2003), 11791214.
[30]Raviart, P. A. and Thomas, J. M., A mixed finite element method for second order elliptic problems, Lecture Notes in Math., Berlin-Heidelberg Newyork Springer, Vol. 66, 1977, 292315.
[31]Rivie, B.re, Wheeler, M. F. and Girault, V., A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., 39(2001), 902931.
[32]Schneider, R., Xu, Y. and Zhou, A., An analysis of discontinuous Galerkin methods for elliptic problems, Adv. Comput. Math., 25(2006), 259286.
[33]Scott, L. R. and Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54(1994), 483493.
[34]Tomar, S. K. and Repin, S. I., Efficient computable error bounds for discontinuous Galerkin pproximations of elliptic problems, J. Comput. Appl. Math., 226(2009), 358369.
[35]Verfuürth, R., A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, New York, Stuttgart, 1996.
[36]Wohlmuth, B. I. and Hoppe, R. H. W., A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements, Math. Comp., 68 (1999), 13471378.
[37]Wohlmuth, B. I., Toselli, A. and Widlund, O. B., An iterative substructuring method for Raviart-Thomas vector fields in three dimensions, SIAM J. Numer. Anal., 37 (2000), 16571676.

Keywords

Related content

Powered by UNSILO

A Priori and a Posteriori Error Estimates for H(div)-Elliptic Problem with Interior Penalty Method

  • Yuping Zeng and Jinru Chen

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.