Skip to main content Accessibility help

Practical Techniques in Ghost Fluid Method for Compressible Multi-Medium Flows

  • Liang Xu (a1), Chengliang Feng (a2) and Tiegang Liu (a2)


The modified ghost fluid method (MGFM), due to its reasonable treatment for ghost fluid state, has been shown to be robust and efficient when applied to compressible multi-medium flows. Other feasible definitions of the ghost fluid state, however, have yet to be systematically presented. By analyzing all possible wave structures and relations for a multi-medium Riemann problem, we derive all the conditions to define the ghost fluid state. Under these conditions, the solution in the real fluid region can be obtained exactly, regardless of the wave pattern in the ghost fluid region. According to the analysis herein, a practical ghost fluid method (PGFM) is proposed to simulate compressible multi-medium flows. In contrast with the MGFM where three degrees of freedomat the interface are required to define the ghost fluid state, only one degree of freedomis required in this treatment. However, when these methods proved correct in theory are used in computations for the multi-medium Riemann problem, numerical errors at the material interface may be inevitable. We show that these errors are mainly induced by the single-medium numerical scheme in essence, rather than the ghost fluid method itself. Equipped with some density-correction techniques, the PGFM is found to be able to suppress these unphysical solutions dramatically.


Corresponding author

*Corresponding author. Email addresses: (L. Xu), (C. Feng), (T. Liu)


Hide All
[1] Larrouturou, B., How to preserve the mass fractions positivity when computing compressible multi-component flows, J. Comput. Phys., 95 (1991), 5984.
[2] Karni, S., Multicomponent flow calculations by a consistent primitive algorithm, J. Comput. Phys., 112 (1994), 3143.
[3] Karni, S., Hybrid multifluid algorithms, SIAM J. Sci. Comput., 17 (1996), 10191039.
[4] Abgrall, R., How to prevent oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 125 (1996), 150160.
[5] Jenny, P., Muller, B. and Thomann, H., Correction of conservative Euler solvers for gas mixtures, J. Comput. Phys., 132 (1997), 91107.
[6] Abgrall, R. and Karni, S., Computations of compressible multifluids, J. Comput. Phys., 169 (2001), 594623.
[7] van Brummelen, E. H. and Koren, B., A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows, J. Comput. Phys., 185 (2003), 289308.
[8] Nourgaliev, R. R., Dinh, T. N. and Theofanous, T. G., Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys., 213 (2006), 500529.
[9] Johnsen, E. and Colonius, T., Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys., 219 (2006), 715732.
[10] Hirt, C. and Nichols, B., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39 (1981), 201225.
[11] Sussman, M., Smereka, P. and Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114 (1994), 146159.
[12] Unverdi, S.O. and Tryggvason, G., Afront-tracking method for viscous incompressible multifluid flows, J. Comput. Phys., 100 (1992), 2537.
[13] Glimm, J., Marchesin, D. and McBryan, O., Subgrid resolution of fluid discontinuities, II, J. Comput. Phys., 37 (1980), 336354.
[14] Glimm, J., Marchesin, D. and McBryan, O., A numerical method for two phase flow with an unstable interface, J. Comput. Phys., 39 (1981), 179200.
[15] Fedkiw, R. P., Aslam, T., Merriman, B. and Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152 (1999), 457492.
[16] Fedkiw, R. P., Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. Comput. Phys., 175 (2002), 200224.
[17] Liu, T. G., Khoo, B. C. and Yeo, K. S., Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190 (2003), 651681.
[18] Hu, X. Y. and Khoo, B. C., An interface interaction method for compressible multifluids, J. Comput. Phys., 198 (2004), 3564.
[19] Wang, C.W., Liu, T. G. and Khoo, B. C., A real-ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput., 28 (2006), 278302.
[20] Liu, T. G., Khoo, B. C. and Wang, C. W., The ghost fluid method for compressible gas-water simulation, J. Comput. Phys., 204 (2005), 193221.
[21] Hao, Y. and Prosperetti, A., A numerical method for three-dimensional gas-liquid flow computations, J. Comput. Phys., 196 (2004), 126144.
[22] Farhat, C., Rallu, A. and Shankaran, S., A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions, J. Comput. Phys., 227 (2008), 76747700.
[23] Terashima, H. and Tryggvason, G., A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228 (2009), 40124037.
[24] Qiu, J. X., Liu, T. G. and Khoo, B. C., Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the ghost fluid method, Commun. Comput. Phys., 3 (2008), 479504.
[25] Liu, T. G., Xie, W. F. and Khoo, B. C., The modified ghost fluid method for coupling of fluid and structure constituted with hydro-elasto-plastic equation of state, SIAM J. Sci. Comput., 30 (2008), 11051130.
[26] Liu, T. G., Khoo, B. C. and Xie, W. F., The modified ghost fluid method as applied to extreme fluid-structure interaction in the presence of cavitation, Commun. Comput. Phys., 1 (2006), 898919.
[27] Sambasivan, S. and UdayKumar, H. S., Ghost fluid method for strong shock interactions. Part 1: Fluid-fluid interfaces, AIAA Journal, 47 (2009), 29072922.
[28] Barton, P. T. and Drikakis, D., An Eulerian method for multi-component problems in nonlinear elasticity with sliding interfaces, J. Comput. Phys., 229 (2010), 55185540.
[29] Xu, L. and Liu, T. G., Optimal error estimation of the modified ghost fluid method, Commun. Comput. Phys., 8 (2010), 403426.
[30] Xu, L. and Liu, T. G., Accuracies and conservation errors of various ghost fluid methods for multi-medium Riemann problem, J. Comput. Phys., 230 (2011), 49754990.
[31] Fedkiw, R. P., Marquina, A. and Merriman, B., An isobaric fix for the overheating problem in multimaterial compressible flows, J. Comput. Phys., 148 (1999), 545578.
[32] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag Berlin Heidelbert, 1999.
[33] Liu, T. G., Khoo, B. C. and Yeo, K. S., The simulation of compressible multi-medium flow. Part I: A new methodology with test applications to 1D gas-gas and gas-water cases, Comput. Fluids, 30 (2001), 291314.
[34] Harten, A., Lax, P. D. and van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25 (1983), 3561.
[35] Haas, J. F. and Sturtevant, B., Interaction of weak shock waves with cylindrical and spherical inhomogeneities, J. Fluid Mech., 181 (1987), 4176.
[36] Quirk, J. J. and Karni, S., On the dynamics of a shock-bubble interaction, J. Fluid Mech., 318 (1996), 129163.
[37] Marquina, A. and Mulet, P., A flux-split algorithm applied to conservative models for multicomponent compressible flows, J. Comput. Phys., 185 (2003), 120138.
[38] Liu, T. G., Khoo, B. C. and Yeo, K. S., The simulation of compressible multi-medium flow. Part II: Applications to 2D underwater shock refraction, Comput. Fluids, 30 (2001), 315337.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed