Skip to main content Accessibility help
×
Home

Parameter-Free Time Adaptivity Based on Energy Evolution for the Cahn-Hilliard Equation

Abstract

It is known that large time-stepping method are useful for simulating phase field models. In this work, an adaptive time-stepping strategy is proposed based on numerical energy stability and equi-distribution principle. The main idea is to use the energy variation as an indicator to update the time step, so that the resulting algorithm is free of user-defined parameters, which is different from several existing approaches. Some numerical experiments are presented to illustrate the effectiveness of the algorithms.

Copyright

Corresponding author

*Corresponding author. Email addresses:luofusheng@tio.org.cn (F. Luo), tangt@sustc.edu.cn (T. Tang), hhxie@lsec.cc.ac.cn (H. Xie)

References

Hide All
[1]Cahn, J.W. and Hilliard, J. E., Free energy of a non-uniform system I: Interfacial free energy, J. Chem. Phys., 28 (1958), 258267.
[2]Choo, S. M., Chung, S. K. and Kim, K. I., Conservative nonlinear difference scheme for the Cahn-Hilliard equation-II, Comput. Math. Appl., 39 (2000), 229243.
[3]Eyre, D., An unconditionally stable one-step scheme for gradient systems, Preprint, 1998.
[4]Demmel, J. W., Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics, 1997.
[5]Doyle, J. C., Francis, B. A. and Tannenbaum, A. R., Feedback Control Theory, Macmillan Publishing Co., 1990.
[6]Du, Q. and Nicolaides, R. A., Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal., 28 (1994), 13101322.
[7]Du, Q., Tian, L. and Ju, L., Finite element approximation of the Cahn-Hilliard equation on surfaces, Comp. Meth. Appl. Mech. Engr, 200 (2011), 24582470.
[8]Elliott, C. M. and French, D. A., Numerical studies of the Cahn-Hilliard equation for phase separation, IMA J. Appl. Math., 38 (1987), 97128.
[9]Elliott, C. M. and Zheng, S. M., On the Cahn-Hilliard equation, Arch. Rat. Meth. Anal., 96 (1986), 339357.
[10]Cueto-Felgueroso, L. and Peraire, J., A time-adaptive finite volume method for the Cahn-Hillard and Kuramoto-Sivashinsky equations, J. Comput. Phys., 227 (2008), 998510017.
[11]Feng, W., Yu, P., Hu, S., Liu, Z., Du, Q. and Chen, L., A Fourier spectral moving mesh method for the Cahn-Hilliard equation with elasticity, Commun. Comput. Phys., 5 (2009), 582599.
[12]Feng, X., Tang, T. and Yang, J., Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods, SIAM J. Sci. Computing, 37 (2015), A271A294.
[13]Franklin, G., Powell, J. D. and Emami-Naeini, A., Feedback Control of Dynamic Systems, Prentice Hall, 2006.
[14]Furihata, D., A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer. Math., 87 (2001), 675699.
[15]Gomez, H., Hughes, T.J.R., Provably unconditionally stable, second-order time accurate, mixed variational methods for phase-field models, J. Comput. Phys., 230 (2011), 53105327.
[16]He, L. and Liu, Y., A class of stable spectral methods for the Cahn-Hillard equation, J. Comput. Phys., 228 (2009), 51015110.
[17]He, Y. N., Liu, Y. X. and Tang, T., On large time-stepping methods for the Cahn-Hilliard equation, Appl. Numer. Math., 57 (2007), 616628.
[18]Li, B. and Liu, J. G., Thin film epitaxy with or without slope selection, European J. Appl. Math., 14 (2003), 713743.
[19]Novick-Cohen, A. and Segel, L. A., Nonlinear aspects of the Cahn-Hilliard equation, Phys. D, 10 (1984), 277298.
[20]Qiao, Z. H., Zhang, Z. R., and Tang, T., An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM. J. Sci. Comput., 33 (2011), 13951414.
[21]Shen, J., Tang, T. and Wang, L., Spectral Methods: Algorithms, Analysis and Applications, Springer-Verlag, Berlin Heidelberg, 2011.
[22]Shen, J., Wang, C., Wang, X. and Wise, S., Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105125.
[23]Shen, J. and Yang, X., Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, DCDS, Series A, 28 (2010), 16691691.
[24]Söderlind, G., Automatic control and adaptive time-stepping, Numer. Algor., 31 (2001), 281310.
[25]Sun, Z. Z., A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation, Math. Comput., 64 (1995), 14631471.
[26]Wells, G., Kuhl, E. and Garikipati, K., A discontinuous Galerkin method for the Cahn-Hillard equation, J. Comput. Phys., 218 (2006), 860877.
[27]Wise, S. M., Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hillard-Hele-Shaw system of equations, J. Sci. Comput., 44 (2010), 3868.
[28]Xu, C. J. and Tang, T., Stability analysis of large time-stepping methods for epitaxial growth models, SIAM J. Numer. Anal., 44 (2006), 17591779.
[29]Zhang, Z. R. and Qiao, Z. H., An adaptive time-stepping strategy for the Cahn-Hilliard equation, Commun. Comput. Phys., 11 (2012), 12611278.
[30]Zhu, J., Chen, L., Shen, J. and Tikare, V., Coarsening kinetics from a variable mobility Cahn-Hilliard equation-application of semi-implicit Fourier spectral method, Phys. Review E, 60(4) (1999), 35643572.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed