[1]Artebrant, R. and Schroll, H., Numerical simulation of Camassa-Holm peakons by adaptive upwinding, Appl. Numer. Math., 56 (2006), pp. 695–711.

[2]Bressan, A., Chen, G., and Zhang, Q., Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics, Discr. Cont. Dynam. Syst. 35 (2015), pp. 25–42.

[3]Bressan, A. and Constantin, A., Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), pp. 215239.

[4]Camassa, R. and Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), pp. 1661–1664.

[5]Camassa, R. and Lee, L., A completely integrable particle method for a nonlinear shallow-water wave equation in periodic domains, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 14 (2007), pp. 1–5.

[6]Chertock, A., Du Toit, P., and Marsden, J. E., Integration of the EPDiff equation by particle methods, M2AN Math. Model. Numer. Anal., 46(3) (2012), pp. 515–534.

[7]Chertock, A., Liu, J.-G., and Pendleton, T., Elastic collisions amongpeakon solutions for the Camassa-Holm equation, Appl. Numer. Math., 93 (2015), pp. 30–46.

[8]Chiu, P. H., Lee, L., and Sheu, T. W. H., A dispersion-relation-preserving algorithm for a non-linear shallow-water wave equation, J. Comput. Phys., 228 (2009), pp. 8034–8052.

[9]Cohen, D., Matsuo, T., and Raynaud, X., A multi-symplectic numerical integrator for the two-component Camassa-Holm equation, J. Nonlinear Math. Phys., 21 (2014), pp. 442–453.

[10]Cohen, D., Owren, B., and Raynaud, X., Multi-symplectic integration of the Camassa-Holm equation, J. Comput. Phys., 227 (2008), pp. 5492–5512.

[11]Constantin, A. and Escher, J., Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), pp. 303–328.

[12]Constantin, A. and Ivanov, R. I., On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), pp. 7129–7132.

[13]Constantin, A. and Kolev, B., On the geometric approach to the motion of inertial mechanical systems, J. Phys. A: Math. Gen., 35 (2002), pp. R51-R79.

[14]Constantin, A. and Kolev, B., Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), pp. 787–804.

[15]Escher, J., Lechtenfeld, O., and Yin, Z., Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), pp. 493–513.

[16]Feng, B.-F., Maruno, K.-I., and Ohta, Y., A self-adaptive moving mesh method for the Camassa-Holm equation, J. Comput. Appl. Math., 235 (2010), pp. 229–243.

[17]Gottlieb, S., Shu, C.-W., and Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), pp. 89–112.

[18]Green, A. and Naghdi, P., A derivation of equations for wave propagation in water at variable depth, J. Fluid Mech., 78 (1976), pp. 237–246.

[19]Grunert, K., Blow-up for the two-component Camassa-Holm system., Discrete Contin. Dyn. Syst., 35(5) (2015), pp. 2041–2051.

[20]Grunert, K., Holden, H., and Raynaud, X., Periodic conservative solutions for the two-component Camassa-Holm system, in Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th birthday, vol. 87 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 2013, pp. 165–182.

[21]Grunert, K., Holden, H. and Raynaud, X., A continuous interpolation between conservative and dissipative solutions for the two-component Camassa-Holm system, Forum Math., Sigma, 3 (2015), e1, doi:10.1017/fms.2014.29.

[22]Holden, H. and Raynaud, X., A convergent numerical scheme for the Camassa-Holm equation based on multipeakons, Discrete Contin. Dyn. Syst., 14 (2006), pp. 505–523.

[23]Holm, D., Schmah, T., and Stoica, C., Geometric Mechanics and Symmetry, vol. 12 of Oxford Texts in Applied and Engineering Mathematics, Oxford University Press, Oxford, 2009.

[24]Holm, D. D., Náraigh, L. Ó, and Tronci, C., Singular solutions of a modified two-component Camassa-Holm equation, Phys. Rev. E (3), 79 (2009), pp. 016601, 13.

[25]Holm, D.-D. and Ivanov, R.-I, Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples, J. Phys. A, 43 (2010).

[26]Ivanov, R., Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), pp. 389–396.

[27]Kalisch, H. and Lenells, J., Numerical study of traveling-wave solutions for the Camassa-Holm equation, Chaos Solitons Fractals, 25 (2005), pp. 287–298.

[28]Kalisch, H. and Raynaud, X., Convergence of a spectral projection of the Camassa-Holm equation, Numer. Methods Partial Differential Equations, 22 (2006), pp. 1197–1215.

[29]Wang, Y., Song, Y., and Karimi, H. R., *On the global dissipative and multipeakon dissipative behavior of the two-component Camassa-Holm system*, Abstr. Appl. Anal., Article ID 348695 (2014), 16 pages.

[30]Kohlmann, M., The two-component Camassa-Holm system in weighted *L* ^{p} spaces, Z. Angew. Math. Mech. 94(3) (2014), pp. 264–272.

[31]Kurganov, A., Noelle, S., and Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23 (2001), pp. 707–740.

[32]Li, J. B. and Li, Y. S., Bifurcations of travelling wave solutions for a two-component Camassa-Holm equation, Acta Math. Sin. (Engl. Ser.), 24 (2008), pp. 1319–1330.

[33]Li, Y. and Olver, P., Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), pp. 27–63.

[34]Matsuo, T. and Yamaguchi, H., An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations, J. Comput. Phys., 228 (2009), pp. 4346–4358.

[35]Moon, B., Global solutions to a special case of the generalized weakly dissipative periodic two-component Camassa-Holm system, Nonlinear Anal., 117 (2015), pp. 38–46.

[36]Rodrõguez-Blanco, G., On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), pp. 309–327.

[37]Olver, P. J. and Rosenau, P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53(2) (1996), pp. 1900–1906.

[38]Qiao, Z., Yan, K., and Yin, Z., Qualitative analysis for a new integrable two-component Camassa-Holm system with peakon and weak kink solutions, Comm. Math. Phys., 336(2) (2015), pp. 581–617.

[39]Rocca, G., Lombardo, M., Sammartino, M., and Sciacca, V., Singularity tracking for Camassa-Holm and Prandtl's equations, Appl. Numer. Math., 56 (2006), pp. 1108–1122.

[40]Xu, Y. and Shu, C.-W., A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J. Numer. Anal., 46 (2008), pp. 1998–2021.

[41]Tian, L., Xia, Z., and Zhang, P., Nonuniform continuity of the solution map to the two component Camassa-Holm system, J. Math. Anal. Appl. 416(1) (2014), pp. 374–389.

[42]Yin, Z., On the Cauchy problem for an integrable equation with peakon solutions, Ill. J. Math., 47 (2003), pp. 649–666.