Skip to main content Accessibility help
×
Home

Numerical Solution of 3D Poisson-Nernst-Planck Equations Coupled with Classical Density Functional Theory for Modeling Ion and Electron Transport in a Confined Environment

  • Da Meng (a1), Bin Zheng (a1), Guang Lin (a1) (a2) and Maria L. Sushko (a1)

Abstract

We have developed efficient numerical algorithms for solving 3D steady-state Poisson-Nernst-Planck (PNP) equations with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by a finite difference scheme and solved iteratively using the Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Then, the algebraic multigrid method is applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed, which reduces computational complexity from O(N2) to O(NlogN), where N is the number of grid points. Integrals involving the Dirac delta function are evaluated directly by coordinate transformation, which yields more accurate results compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for lithiumion (Li-ion) batteries are shown to be in good agreement with the experimental data and the results from previous studies.

Copyright

Corresponding author

Corresponding author.Email:Guanglin@purdue.edu

References

Hide All
[1]Richardson, G., King, J., Time-dependent modelling and asymptotic analysis of electrochem-ical cells, J. Eng. Math. 59 (2007) 239275.
[2]Bazant, M. Z., Kilic, M. S., Storey, B. D., Ajdari, A., Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions, Advances in Colloid and Interface Science 152 (2009) 4888.
[3]Soestbergen, M. van, Biesheuvel, P., Bazant, M., Diffuse-charge effects on the transient response of electrochemical cells, Physical Review E 81 (2010) 021503.
[4]Ciucci, F., Lai, W., Derivation of micro/macro lithium battery models from homogenization, Transp. Porous Med. 88 (2011) 249270.
[5]Marcicki, J., Conlisk, A. T., Rizzoni, G., Comparison of limiting descriptions of the electrical double layer using a simplified lithium-ion battery model, ECS Transactions 41 (14) (2012) 921.
[6]Eisenberg, B., Ionic channels in biological membranes - electrostatic analysis of a natural nanotube, Contemp. Phys. 39 (6) (1998) 447466.
[7]Kurnikova, M. G., Coalson, R. D., Graf, P., Nitzan, A., A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel, Biophys. J. 76 (1999) 642656.
[8]Cardenas, A. E., Coalson, R. D., Kurnikova, M. G., Three-dimensional Poisson-Nernst-Planck theory studies: Influence of membrane electrostatics on Gramicidin A channel conductance, Biophys. J. 79 (2000) 8093.
[9]Hollerbach, U., Chen, D. P., Busath, D. D., Eisenberg, B., Predicting function from structure using the Poisson-Nernst-Planck equations: Sodium current in the Gramicidin A channel, Langmuir 79 (13) (2000) 55095514.
[10]Coalson, R. D., Kurnikova, M. G., Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels, IEEE Transactions on Nanobioscience 4 (1) (2005) 8193.
[11]Lu, B., Zhou, Y., Huber, G. A., Bond, S. D., Holst, M. J., McCammon, J. A., Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution, The Journal of Chemical Physics 127 (2007) 135102.
[12]Bolintineanu, D. S., Sayyed-Ahmad, A., Davis, H. T., Kaznessis, Y. N., Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore, PLOS Computational Biology 5 (1) (2009) e1000277.
[13]Singer, A., Norbury, J., A Poisson-Nernst-Planck model for biological ion channels - an asymptotic analysis in a three-dimensional narrow funnel, SIAM J. Appl. Math. 70 (3) (2009) 949968.
[14]Selberherr, S., Analysis and Simulation of Semiconductor Devices, Springer-Verlag/Wien, New York, 1984.
[15]Markowich, P., The Stationary Semiconductor Device Equation, Springer-Verlag/Wien, New York, 1986.
[16]Rouston, D., Bipolar Semiconductor Devices, McGraw-Hill, New York, 1990.
[17]Newman, J., Electrochemical Systems, Prentice Hall, 1991.
[18]Singh, Y., Density-functional theory of freezing and properties of the ordered phase, Physics Reports 207 (6) (1991) 351444.
[19]Gillespie, D., Nonner, W., Eisenberg, R. S., Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux, J. Phys.: Condens. Matter 14 (2002) 1212912145.
[20]Gillespie, D., Xu, L., Wang, Y., Meissner, G., (De)constructing the Ryanodine receptor: modeling ion permeation and selectivity of the Calcium release channel, J. Phys. Chem. B 109 (2005) 1559815610.
[21]Gillespie, D., Energetics of divalent selectivity in a Calcium channel: the Ryanodine receptor case study, Biophys. J. 94 (2008) 11691184.
[22]Gillespie, D., Fill, M., Intracellular Calcium release channels mediate their own countercurrent: the Ryanodine receptor case study, Biophys. J. 95 (2008) 37063714.
[23]Sushko, M. L., Rosso, K. M., J. Liu, Size effects on Li/electron conductivity in TiÜ2 nanoparticles, Chem. Phys. Lett. 1 (13) (2010) 19671972.
[24]Cao, D., Wu, J., Microstructure of block copolymers near selective surfaces: theoretical predictions and configurational-bias Monte-Carlo simulation, Macromolecules 38 (2005) 971978.
[25]Du, Y. A., Holzwarth, N. A. W., Li ion diffusion mechanisms in the crystalline electrolyte γ Li3PO4, Journal of the Electrochemical Society 154 (11) (2007) 9991004.
[26]Sushko, M. L., Rosso, K. M., Zhang, J.-G. J., Liu, J., Multiscale simulations of Li ion conductivity in solid electrolyte, Chem. Phys. Lett. 2 (2011) 23522356.
[27]Sushko, M. L., Rosso, K. M., Liu, J., Mechanism of Li+/electron conductivity in rutile and anatase TiO2 nanoparticles, J. Phys. Chem. C 114 (2010) 2027720283.
[28]Sushko, M. L., Liu, J., Structural rearrangements in self-assembled surfactant layers at surfaces, J. Phys. Chem. B 114 (2010) 38473854.
[29]Li, X., Qi, W., Mei, D., Sushko, M. L., Aksay, I., Liu, J., Functionalized graphene sheets as molecular templates for controlled nucleation and self-assembly of metal oxide-graphene nanocom-posites, Advanced Materials 24 (2012) 51365141.
[30]Hu, S., Li, Y., Rosso, K. M., Sushko, M. L., Mesoscale phase-field modeling of charge transport in nanocomposite electrodes for lithium-ion batteries, The Journal of Chemical Physics C 117(2013) 2840.
[31]Golovnev, A., Trimper, S., Analytical solution of the Poisson-Nernst-Planck equations in the linear regime at an applied dc-voltage, The Journal of Chemical Physics 134 (2011) 154902.
[32]Ji, S., Liu, W., Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part I: analysis, J. Dyn. Diff. Equat. 24 (2012) 955983.
[33]Liu, W., Tu, X., Zhang, M., Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part II: Numerics, J. Dyn. Diff. Equat. 24 (2012) 9851004.
[34]Wu, J., Srinivasan, V., Xu, J., Wang, C., Newton-Krylov-Multigrid algorithms for battery simulation, Journal of the Electrochemical Society 149 (10) (2002) A1342A1348.
[35]Mathur, S. R., Murthy, J. Y., A multigrid method for the Poisson-Nernst-Planck equations, International Journal of Heat and Mass Transfer 52 (2009) 40314039.
[36]Coco, S., Gazzo, D., Laudani, A., Pollicino, G., A 3-D finite element Poisson-Nernst-Planck model for the analysis of ion transport across ionic channels, IEEE Transactions on Magnetics 43 (4) (2007) 14611464.
[37]Lu, B., Holst, M. J., McCammon, J. A., Zhou, Y., Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: finite element solutions, Journal of Compu-tational Physics 229 (2010) 69796994.
[38]Zheng, Q., Chen, D., Wei, G.-W., Second-order Poisson-Nernst-Planck solver for ion transport, Journal of Computational Physics 230 (2011) 52395262.
[39]Hyon, Y., Eisenberg, B., Liu, C., A mathematical model for the hard sphere repulsion in ionic solutions, Commun. Math. Sci. 9 (2) (2011) 459475.
[40]Falgout, R., Yang, U., hypre: a library of high performance preconditioners, in: Sloot, P., Tan, C., Dongarra, J., Hoekstra, A. (Eds.), Computational Science - ICCS 2002 Part III, Vol. 2331 of Lecture Notes in Computer Science, Springer-Verlag, 2002, pp. 632641.
[41]Henson, V. E., Yang, U. M., BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Applied Numerical Mathematics 41 (2002) 155177.
[42]Pekurovsky, D., P3DFFT: A framework for parallel computations of Fourier transforms in three dimensions, SIAM J. Sci. Comput. 34 (4) (2012) C192C209.
[43]Burger, M., Schlake, B., Wolfram, M.-T., Nonlinear Poisson-Nernst-Planck equations for ion flux through confined geometries, Nonlinearity 25 (2012) 961990.
[44]Park, J.-H., Jerome, J., Qualitative properties of steady-state Poisson-Nernst-Planck systems: Mathematical study, SIAM J. Appl. Math. 57 (3) (1997) 609630.
[45]Liu, W., Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems, SIAM J. Appl. Math. 65 (3) (2005) 754766.
[46]Jerome, J. W., Consistency of semiconductor modeling: an existence/stability analysis for the sationary Van Roosbroeck system, SIAM J. Appl. Math. 45 (4) (1985) 565590.
[47]Rosenfeld, Y., Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing, Physical Review Letters 63 (9) (1989) 980.
[48]Rosenfeld, Y., Free energy model for inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas, J. Chem. Phys. 98 (10) (1993) 81268148.
[49]Hubbard, A. T. (Ed.), Encyclopedia of surface and colloid science, Vol. 3, CRC Press, 2002.
[50]Wang, K., Yu, Y.-X., Gao, G.-H., Density functional study on the structures and thermodynamic properties of small ions and around polyanionic DNA, Physical Review E 70 (2004) 011912.
[51]Butler, J. N., Ionic Equilibrium: Solubility and pH Calculations, Wiley-Interscience, 1998.
[52]Merkel, B. J., Planer-Friedrich, B., Groundwater Geochemistry: A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems, 2nd Edition, Springer, 2008.
[53]Patra, C. N., Yethiraj, A., Density functional theory for the distribution of small ions around polyions, J. Phys. Chem. B 103 (1999) 60806087.
[54]Li, Z., Wu, J., Density-functional theory for the structures and thermodynamic properties of highly asymmetric electrolyte and neutral component mixtures, Physical Review E 70 (2004) 031109.
[55]Roth, R., Evans, R., Lang, A., Kahl, G., Fundamental measure theory for hard-sphere mixtures revisited: the White Bear version, J. Phys.: Condens. Matter 14 (2002) 1206312078.
[56]Yu, Y.-X., Wu, J., Structures of hard-sphere fluids from a modified fundamental-measure the-ory, J. Chem. Phys. 117 (22) (2002) 1015610164.
[57]Boda, D., Henderson, D., y Teran, L. Mier, Sokolowski, S., The application of density functional theory and the generalized mean spherical approximation to double layers containing strongly coupled ions, J Phys Condens Matter 14 (2002) 1194511954.
[58]Gillespie, D., Hackbusch, W., Eisenberg, R. S., Density functiona theory of charged, hard-sphere fluids, Phys. Rev. E 68 (2003) 031503.
[59]Waisman, E., Lebowitz, J. L., Mean spherical model integral equation for charged hard spheres. II. Results, J. Chem. Phys. 57 (1972) 30933099.
[60]Mier-y-Teran, L., Suh, S., White, H., Davis, H., A nonlocal free-energy density-functional ap-proximation for the electrical double layer, J. Chem. Phys. 92 (8) (1990) 50875098.
[61]Yu, Y.-X., Wu, J., Gao, G.-H., Density-functional theory of spherical electric double layers and ζ potentials of colloidal particles in restricted-primitive-model electrolyte solutions, J. Chem. Phys. 120 (15) (2004) 72237233.
[62]Jerome, J., Analysis of Charge Transport: A Mathematical Study of Semiconductors, Springer-Verlag, Heidelberg, 1996.
[63]Im, W., Roux, B., Ion permeation and selectivity of OmpF Porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory, J. Mol. Biol. 322 (2002) 851869.
[64]Hackbusch, W., Multi-Grid Methods and Applications, Springer, 1985.
[65]Wesseling, P., An Introduction to Multigrid Methods, John Wiley & Sons, 1992.
[66]Bramble, J. H., Multigrid Methods, Chapman and Hall/CRC, 1993.
[67]Brandt, A., McCormick, S., Ruge, J., Algebraic multigrid for automatic multigrid solutions with application to geodetic computations, Tech. rep., Institute for Computational Studies, Fort Collins, Colorado (October 1982).
[68]Brandt, A., Algebraic multigrid theory: the symmetric case, Math. Comp. 19 (1986) 2356.
[69]Cooley, J. W., Lewis, P. A. W., Welch, P. D., Application of the fast Fourier transform to computation of Fourier integrals, Fourier series, and convolution integrals, IEEE Transactions on Audio and Electroacoustics 15 (2) (1967) 7984.
[70]Fu, Z.-W., Liu, W.-Y., Li, C.-L., Qin, Q.-Z., High-k lithium phosphorous oxynitride thin films, Applied Physics Letters 83 (24) (2003) 50085010.
[71]Wang, B., Kwak, B., Sales, B., Bates, J., Ionic conductivities and structure of lithium phosphorus oxynitride glasses, Journal of Non-Crystalline Solids 183 (1995) 297306.
[72]Ribeiro, J., Sousa, R., Carmo, J., Goncalves, L., Silva, M., Silva, M., Correia, J., Enhanced solidstate electrolytes made of lithium phosphorous oxynitride films, Thin Solid Films 522 (2012) 8589.
[73]Johnson, O. W., One-dimensional diffusion of Li in rutile, Phys. Rev. A 136 (1964) 284292.
[74]Koudriachova, M. V., Harrison, N. M., de Leeuw, S. W., Diffusion of Li-ions in rutile. An ab initio study, Solid State Ionics 157 (2003) 3538.
[75]Luo, W., Zhu, L., Zheng, X., Grain size effect on electrical conductivity and giant magnetore-sistance of bulk magnetic polycrystals, Chin. Phys. Lett. 26 (2009) 117502.

Keywords

Numerical Solution of 3D Poisson-Nernst-Planck Equations Coupled with Classical Density Functional Theory for Modeling Ion and Electron Transport in a Confined Environment

  • Da Meng (a1), Bin Zheng (a1), Guang Lin (a1) (a2) and Maria L. Sushko (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed