Skip to main content Accessibility help

A Multigrid Method for Ground State Solution of Bose-Einstein Condensates

  • Hehu Xie (a1) and Manting Xie (a2)


A multigrid method is proposed to compute the ground state solution of Bose-Einstein condensations by the finite element method based on the multilevel correction for eigenvalue problems and the multigrid method for linear boundary value problems. In this scheme, obtaining the optimal approximation for the ground state solution of Bose-Einstein condensates includes a sequence of solutions of the linear boundary value problems by the multigrid method on the multilevel meshes and some solutions of nonlinear eigenvalue problems some very low dimensional finite element space. The total computational work of this scheme can reach almost the same optimal order as solving the corresponding linear boundary value problem. Therefore, this type of multigrid scheme can improve the overall efficiency for the simulation of Bose-Einstein condensations. Some numerical experiments are provided to validate the efficiency of the proposed method.


Corresponding author

*Corresponding author. Email (H. Xie), (M. Xie)


Hide All
[1]Adams, R. A., Sobolev spaces, Academic Press, New York, 1975.
[2]Adhikari, S. K., Collapse of attractive Bose-Einstein condensed vortex states in a cylindrical trap, Phys. Rev. E, 65 (2002), 016703.
[3]Adhikari, S. K., Muruganandam, P., Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation, J. Phys. B, 35 (2002), 2831.
[4]Anderson, M. H., Ensher, J. R., Mattews, M. R. , Wieman, C. E. and Cornell, E. A., Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198201.
[5]Anglin, J. R. and Ketterle, W., Bose-Einstein condensation of atomic gasses, Nature, 416 (2002), 211218
[6]Bao, W. and Cai, Y., Mathematical theory and numerical methods for Bose-Einstein condestion, Kinetic and Related Models, 6(1) (2013), 1135.
[7]Bao, W. and Du, Q., Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, Siam J. Sci. Comput., 25(5) (2004), 16741697.
[8]Bao, W. and Tang, W., Ground-state solution of trapped interacting Bose-Einstein condensate by directly minimizing the energy functional, J. Comput. Phys., 187 (2003), 230254.
[9]Bramble, J. H., Multigrid Methods, Pitman Research Notes in Mathematics, V. 294, John Wiley and Sons, 1993.
[10]Bramble, J. H. and Pasciak, J. E., New convergence estimates for multigrid algorithms, Math. Comp., 49 (1987), 311329.
[11]Brenner, S. and Scott, L., The Mathematical Theory of Finite Element Methods, New York: Springer-Verlag, 1994.
[12]Cancès, E., Chakir, R., Maday, Y., Numerical analysis of nonlinear eigenvalue problems, J. Sci. Comput., 45(1-3) (2010), 90117.
[13]Cerimele, M. M., Chiofalo, M. L., Pistella, F., Succi, S., Tosi, M. P., Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: an application to trapped Bose-Einstein condensates, Phys. Rev. E, 62 (2000), 1382.
[14]Chien, C.-S., Huang, H.-T., Jeng, B.-W. and Li, Z.-C., Two-grid discretization schemes for nonlinear Schröinger equations, J. Comput. Appl. Math., 214 (2008), 549571.
[15]Chien, C.-S., Jeng, B.-W., A two-grid discretization scheme for semilinear elliptic eigenvalue problems, SIAM J. Sci. Comput., 27(4) (2006), 12871304.
[16]Chiofalo, M. L., Succi, S., Tosi, M. P., Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E, 62 (2000), 7438.
[17]Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland, 1978.
[18]Cornell, E. A., Very cold indeed: the nanokelvin physics of Bose-Einstein condensation J. Res. Natl Inst. Stand., 101 (1996), 419434.
[19]Cornell, E. A. and Wieman, C. E., Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys., 74 (2002), 875893.
[20]Dalfovo, F., Giorgini, S., Pitaevskii, L. P. and Stringari, S., Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463512.
[21]Dodd, R. J., Approximate solutions of the nonlinear Schrödinger equation for ground and excited states of Bose-Einstein condensates, J. Res. Natl. Inst. Stan., 101 (1996), 545.
[22]Edwards, M., Burnett, K., Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms, Phys. Rev. A, 51 (1995), 1382.
[23]Griffin, A., Snoke, D. W., and Stringari, S., Bose Einstein-Condensation, Cambridge University Press, Cambridge, 1995.
[24]Gross, E. P., Nuovo, Cimento., 20 (1961), 454.
[25]Hackbush, W., Multi-grid Methods and Applications, Springer-Verlag, Berlin, 1985.
[26]Hau, L. V., Busch, B. D., Liu, C., Dutton, Z., Burns, M. M. and Golovchenko, J. A., Near-resonant spatial images of confined Bose-Einstein condensates in a 4-Dee magnetic bottle, Phys. Rev. A, 58 (1998), R5457.
[27]Henning, P., Målqvist, A. and Peterseim, D., Two-level discretization techniques for ground state computations of Bose-Eistein condensates, SIAM J. Numer. Anal., 52(4) (2014), 15251550.
[28]Jin, S., Levermore, C. D., and McLaughlin, D. W., The semiclassical limit of the Defocusing Nonlinear Schrödinger Hierarchy, CPAM, 52 (1999), 613654.
[29]Ketterle, W., Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser, Rev. Mod. Phys., 74 (2002), 11311151.
[30]Laudau, L. and Lifschitz, E., Quantum Mechanics: non-relativistic theory, Pergamon Press, New York, 1977.
[31]Lieb, E. H., Seiringer, R. and Yangvason, J., Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A, 61 (2000), 043602.
[32]Lin, Q. and Xie, H., A multi-level correction scheme for eigenvalue problems, Math. Comp., 84 (2015), 7188.
[33]McCormick, S. F., ed., Multigrid Methods. SIAM Frontiers in Applied Matmematics 3. Society for Industrial and Applied Mathematics, Philadelphia, 1987.
[34]Schneider, B. I., Feder, D. L., Numerical approach to the ground and excited states of a Bose-Einstein condensated gas confined in a completely anisotropic trap, Phys. Rev. A, 59 (1999), 2232.
[35]Xie, H., A type of multilevel method for the Steklov eigenvalue problem, IMA J. Numer. Anal., 34(2) (2014), 592608.
[36]Xie, H., A type of multi-level correction method for eigenvalue problems by nonconforming finite element methods, Research Report in ICMSEC, 2012-10 (2012).
[37]Xie, H., A multigrid method for eigenvalue problem, J. Comput. Phys., 274 (2014), 550561.
[38]Xu, J., Iterative methods by space decomposition and subspace correction, SIAM Review, 34(4) (1992), 581613.
[39]Zhou, A., An analysis of fnite-dimensional approximations for the ground state solution of Bose-Einstein condensates, Nonlinearity, 17 (2004), 541550.
[40]Zienkiewicz, O. and Zhu, J., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 33(7) (1992), 13311364.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed