[1]Adams, R. A., Sobolev spaces, Academic Press, New York, 1975.

[2]Adhikari, S. K., Collapse of attractive Bose-Einstein condensed vortex states in a cylindrical trap, Phys. Rev. E, 65 (2002), 016703.

[3]Adhikari, S. K., Muruganandam, P., Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation, J. Phys. B, 35 (2002), 2831.

[4]Anderson, M. H., Ensher, J. R., Mattews, M. R. , Wieman, C. E. and Cornell, E. A., Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198–201.

[5]Anglin, J. R. and Ketterle, W., Bose-Einstein condensation of atomic gasses, Nature, 416 (2002), 211–218

[6]Bao, W. and Cai, Y., Mathematical theory and numerical methods for Bose-Einstein condestion, Kinetic and Related Models, 6(1) (2013), 1–135.

[7]Bao, W. and Du, Q., Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, Siam J. Sci. Comput., 25(5) (2004), 1674–1697.

[8]Bao, W. and Tang, W., Ground-state solution of trapped interacting Bose-Einstein condensate by directly minimizing the energy functional, J. Comput. Phys., 187 (2003), 230–254.

[9]Bramble, J. H., Multigrid Methods, Pitman Research Notes in Mathematics, V. 294, John Wiley and Sons, 1993.

[10]Bramble, J. H. and Pasciak, J. E., New convergence estimates for multigrid algorithms, Math. Comp., 49 (1987), 311–329.

[11]Brenner, S. and Scott, L., The Mathematical Theory of Finite Element Methods, New York: Springer-Verlag, 1994.

[12]Cancès, E., Chakir, R., Maday, Y., Numerical analysis of nonlinear eigenvalue problems, J. Sci. Comput., 45(1-3) (2010), 90–117.

[13]Cerimele, M. M., Chiofalo, M. L., Pistella, F., Succi, S., Tosi, M. P., Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: an application to trapped Bose-Einstein condensates, Phys. Rev. E, 62 (2000), 1382.

[14]Chien, C.-S., Huang, H.-T., Jeng, B.-W. and Li, Z.-C., Two-grid discretization schemes for nonlinear Schröinger equations, J. Comput. Appl. Math., 214 (2008), 549–571.

[15]Chien, C.-S., Jeng, B.-W., A two-grid discretization scheme for semilinear elliptic eigenvalue problems, SIAM J. Sci. Comput., 27(4) (2006), 1287–1304.

[16]Chiofalo, M. L., Succi, S., Tosi, M. P., Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E, 62 (2000), 7438.

[17]Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland, 1978.

[18]Cornell, E. A., Very cold indeed: the nanokelvin physics of Bose-Einstein condensation J. Res. Natl Inst. Stand., 101 (1996), 419–434.

[19]Cornell, E. A. and Wieman, C. E., Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys., 74 (2002), 875–893.

[20]Dalfovo, F., Giorgini, S., Pitaevskii, L. P. and Stringari, S., Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463–512.

[21]Dodd, R. J., Approximate solutions of the nonlinear Schrödinger equation for ground and excited states of Bose-Einstein condensates, J. Res. Natl. Inst. Stan., 101 (1996), 545.

[22]Edwards, M., Burnett, K., Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms, Phys. Rev. A, 51 (1995), 1382.

[23]Griffin, A., Snoke, D. W., and Stringari, S., Bose Einstein-Condensation, Cambridge University Press, Cambridge, 1995.

[24]Gross, E. P., Nuovo, Cimento., 20 (1961), 454.

[25]Hackbush, W., Multi-grid Methods and Applications, Springer-Verlag, Berlin, 1985.

[26]Hau, L. V., Busch, B. D., Liu, C., Dutton, Z., Burns, M. M. and Golovchenko, J. A., Near-resonant spatial images of confined Bose-Einstein condensates in a 4-Dee magnetic bottle, Phys. Rev. A, 58 (1998), R54–57.

[27]Henning, P., Målqvist, A. and Peterseim, D., Two-level discretization techniques for ground state computations of Bose-Eistein condensates, SIAM J. Numer. Anal., 52(4) (2014), 1525–1550.

[28]Jin, S., Levermore, C. D., and McLaughlin, D. W., The semiclassical limit of the Defocusing Nonlinear Schrödinger Hierarchy, CPAM, 52 (1999), 613–654.

[29]Ketterle, W., Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser, Rev. Mod. Phys., 74 (2002), 1131–1151.

[30]Laudau, L. and Lifschitz, E., Quantum Mechanics: non-relativistic theory, Pergamon Press, New York, 1977.

[31]Lieb, E. H., Seiringer, R. and Yangvason, J., Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A, 61 (2000), 043602.

[32]Lin, Q. and Xie, H., A multi-level correction scheme for eigenvalue problems, Math. Comp., 84 (2015), 71–88.

[33]McCormick, S. F., ed., Multigrid Methods. SIAM Frontiers in Applied Matmematics 3. Society for Industrial and Applied Mathematics, Philadelphia, 1987.

[34]Schneider, B. I., Feder, D. L., Numerical approach to the ground and excited states of a Bose-Einstein condensated gas confined in a completely anisotropic trap, Phys. Rev. A, 59 (1999), 22–32.

[35]Xie, H., A type of multilevel method for the Steklov eigenvalue problem, IMA J. Numer. Anal., 34(2) (2014), 592–608.

[36]Xie, H., A type of multi-level correction method for eigenvalue problems by nonconforming finite element methods, Research Report in ICMSEC, 2012-10 (2012).

[37]Xie, H., A multigrid method for eigenvalue problem, J. Comput. Phys., 274 (2014), 550–561.

[38]Xu, J., Iterative methods by space decomposition and subspace correction, SIAM Review, 34(4) (1992), 581–613.

[39]Zhou, A., An analysis of fnite-dimensional approximations for the ground state solution of Bose-Einstein condensates, Nonlinearity, 17 (2004), 541–550.

[40]Zienkiewicz, O. and Zhu, J., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 33(7) (1992), 1331–1364.