Skip to main content Accessibility help

Feature-Scale Simulations of Particulate Slurry Flows in Chemical Mechanical Polishing by Smoothed Particle Hydrodynamics

  • Dong Wang (a1), Sihong Shao (a2), Changhao Yan (a1), Wei Cai (a1) (a3) and Xuan Zeng (a1)...


In this paper, the mechanisms of material removal in chemical mechanical polishing (CMP) processes are investigated in detail by the smoothed particle hydrodynamics (SPH) method. The feature-scale behaviours of slurry flow, rough pad, wafer defects, moving solid boundaries, slurry-abrasive interactions, and abrasive collisions are modelled and simulated. Compared with previous work on CMP simulations, our simulations incorporate more realistic physical aspects of the CMP process, especially the effect of abrasive concentration in the slurry flows. The preliminary results on slurry flow in CMP provide microscopic insights on the experimental data of the relation between the removal rate and abrasive concentration and demonstrate that SPH is a suitable method for the research of CMP processes.


Corresponding author



Hide All
[1]Zantye, P. B., Kumar, A., Sikder, A. K., Chemical mechanical planarization for microelectronics applications, Mat. Sci. Eng. R 45 (2004) 89220.
[2]Bielmann, M., Mahajan, U., Singh, R. K., Effect of particle size during tungsten chemical mechanical polishing, Electrochem. Solid State Lett. 2 (8) (1999) 401403.
[3]Basim, G. B., Adler, J. J., Mahajan, U., Singh, R. K., Moudgil, B. M., Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects, J. Elec-trochem. Soc. 147 (9) (2000) 35233528.
[4]Zhou, C., Shan, L., Hight, J. R., Danyluk, S., Ng, S. H., Paszkowskic, A. J., Influence of colloidal abrasive size on material removal rate and surface finish in SiO2 chemical mechanical polishing, Tribol. Trans. 45 (2) (2002) 232238.
[5]Matijević, E., Babu, S. V., Colloid aspects of chemical-mechanical planarization, J. Colloid Interface Sci. 320 (2008) 219237.
[6]Preston, F. W., The theory and design of plate glass polishing machines, J. Soc. Glass Technol. 11 (1927) 214257.
[7]Runnels, S. R., Eyman, L. M., Tribology analysis of chemical-mechanical polishing, J. Electrochem. Soc. 141 (6) (1994) 16981701.
[8]Tichy, J., Levert, J. A., Shan, L., Danyluk, S., Contact mechanics and lubrication hydrodynamics of chemical mechanical polishing, J. Electrochem. Soc. 146 (4) (1999) 15231528.
[9]Sundararajan, S., Thakurta, D. G., Schwendeman, D. W., Murarka, S. P., Gill, W. N., Two-dimensional wafer-scale chemical mechanical planarization models based on lubrication theory and mass transport, J. Electrochem. Soc. 146 (2) (1999) 761766.
[10]Runnels, S. R., Freature-scale fluid-based erosion modeling for chemical-mechanical polish-ing, J. Electrochem. Soc. 141 (7) (1994) 19001904.
[11] C.-Yao, H., Feke, D. L., Robinson, K. M., Meikle, S., Contact mechanics and lubrication hydrodynamics of chemical mechanical polishing, J. Electrochem. Soc. 147 (4) (2000) 15021512.
[12]Arbelaez, D., Zohdi, T. I., Dornfeld, D. A., Modeling and simulation of material removal with particulate flows, Comput. Mech. 42 (5) (2008) 749759.
[13]Zhou, C., Shan, L., Hight, J. R., Ng, S. H., Danyluk, S., Fluid pressure and its effects on chemical mechanical polishing, Wear 253 (2002) 430437.
[14]Mueller, N., Rogers, C., Manno, V. P., White, R., Moinpour, M., In situ investigation of slurry flow fields during CMP, J. Electrochem. Soc. 156 (12) (2009) H908H912.
[15]Zhao, D., He, Y., Lu, X., In situ measurement of fluid pressure at the wafer-pad interface during chemical mechanical polishing of 12-inch wafer, J. Electrochem. Soc. 159 (1) (2012) H22H28.
[16]Terrell, E. J., Higgs III, C. F., Hydrodynamics of slurry flow in chemical mechanical polishing, J. Electrochem. Soc. 153 (6) (2006) K15K22.
[17]Park, S.-S., Cho, C.-H., Ahn, Y., Hydrodynamic analysis of chemical mechanical polishing process, Tribol. Int. 33 (2000) 723730.
[18]Ng, S. H., Measurement and Modeling of Fluid Pressures in Chemical Mechanical Polishing, Ph.D. thesis, Georgia Institute of Technology (2005).
[19]Cooper, K., Cooper, J., Groschopf, J., Flake, J., Solomentsev, Y., Farkas, J., Effects of particle concentration on chemical mechanical planarization, Electrochem. Solid State Lett. 5 (12) (2002) G109G112.
[20]Tamboli, D., Banerjee, G., Waddell, M., Novel interpretations of CMP removal rate depen-dencies on slurry particle size and concentration, Electrochem. Solid State Lett. 7 (10) (2004) F62F65.
[21]Zhang, Z., Liu, W., Song, Z., Effect of abrasive particle concentration on preliminary chemical mechanical polishing of glass substrate, Microelectron. Eng. 87 (2010) 21682172.
[22]Paul, E., A model of chemical mechanical polishing, J. Electrochem. Soc. 148 (6) (2001) G355 G358.
[23]Jeng, Y.-R., Huang, P.-Y., A material removal rate model considering interfacial micro-contact wear behaviour for chemical mechanical polishing, J. Tribol.-Trans. ASME 127 (2005) 190197.
[24]Wang, Y., Zhao, Y., An, W., Ni, Z., Wang, J., Modeling effects of abrasive particle size and concentration on material removal at molecular scale in chemical mechanical polishing, Appl. Surf. Sci. 257 (2010) 249253.
[25]Ye, Y. Y., Biswas, R., Morris, J. R., Bastawros, A., Chandra, A., Molecular dynamics simulation of nanoscale machining of copper, Nanotechnology 14 (10) (2003) 390396.
[26]Chagarov, E., Adams, J. B., Molecular dynamics simulations of mechanical deformation of amorphous silicon dioxide during chemical-mechanical polishing, J. Appl. Phys. 94 (6) (2003) 38533861.
[27]Agrawal, P. M., Raff, L. M., Bukkapatnam, S., Komanduri, R., Molecular dynamics investigations on polishing of a silicon wafer with a diamond abrasive, Appl. Phys. A-Mater. Sci. Process. 100 (1) (2010) 89104.
[28]Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron. J. 82 (12) (1977) 10131024.
[29]Gingold, R. A., Monaghan, J. J., Smoothed particle hydrodynamics: Theory and application to non-spherical stars, Mon. Not. Roy. Astron. Soc. 181 (1977) 375389.
[30]Monaghan, J. J., Smoothed particle hydrodynamics and its diverse applications, Annu. Rev. Fluid Mech. 44 (1) (2012) 323346.
[31]Takano, K., Yamada, K., Takezawa, N., Suzuki, T., Inamura, T., SPH-based flow simulation of polishing slurry including polished debris in CMP, J. Jpn. Soc. Precis. Eng. 73 (1) (2007) 9095, in Japanese.
[32]Adami, S., Hu, X. Y., Adams, N. A., A generalized wall boundary condition for smoothed particle hydrodynamics, J. Comput. Phys. 231 (2012) 70577075.
[33]Wang, D., Zhou, Y. S., Shao, S. H., Effcient implementation of smoothed particle hydrodynamics (SPH) with plane sweep algorithm, preprint (2013).
[34]Liu, G. R., Liu, M. B., Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific Publishing Co. Pte. Ltd., Singapore, 2003.
[35]Dehnen, W., Aly, H., Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Mon. Not. Roy. Astron. Soc. 425 (2) (2012) 10681082.
[36]Morris, J. P., Fox, P. J., Zhu, Y., Modeling low Reynolds number incompressible flows using SPH, J. Comput. Phys. 136 (1997) 214226.
[37]Monaghan, J. J., Smoothed particle hydrodynamics, Rep. Prog. Phys. 68 (8) (2005) 17031759.
[38]Price, D. J., Smoothed particle hydrodynamics and magnetohydrodynamics, J. Comput. Phys. 231 (2012) 759794.
[39]Hu, X. Y., Adams, N. A., A multi-phase SPH method for macroscopic and mesoscopic flows, J. Comput. Phys. 213 (2006) 844861.
[40]Marrone, S., Antuono, M., Colagrossi, A., Colicchio, G., Touzé, D. Le, Grazianni, G., ¿-SPH model for simulating violent impact flows, Comput. Methods Appl. Mech. Engrg. 200 (2011) 15261542.
[41]Monaghan, J. J., Simulating free surface flows with SPH, J. Comput. Phys. 110 (1994) 399406.
[42]Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967.
[43]Monaghan, J. J., SPH without a tensile instability, J. Comput. Phys. 159 (2) (2000) 290311.
[44]Adami, S., Hu, X. Y., Adams, N. A., A transport-velocity formulation for smoothed particle hydrodynamics, J. Comput. Phys. 241 (2013) 292307.
[45]Molteni, D., Colagrossi, A., A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH, Comput. Phys. Commun. 180 (6) (2009) 861872.
[46]Bonet, J., Lok, T.-S., Variational and momentum preservation aspects of smooth particle hydrodynamic formulations, Comput. Methods Appl. Mech. Engrg. 180 (1999) 97115.
[47]Lu, J., Rogers, C., Manno, V. P., Philipossian, A., Anjur, S., Moinpour, M., Measurements of slurry film thickness and wafer drag during CMP, J. Electrochem. Soc. 151 (4) (2004) G241G247.
[48]Lortz, W., Menzel, F., Brandes, R., Klaessig, F., Knothe, T., Shibasaki, T., News from the M in CMP-viscosity of CMP slurries, a constant?, MRS Proc. 767 (2003) 4756.
[49]Fan, X.-J., Tanner, R. I., Zheng, R., Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow, J. Non-Newton. Fluid Mech. 165 (2010) 219226.
[50]Monaghan, J. J., Kos, A., Issa, N., Fluid motion generated by impact, J. Waterw. Port Coast. Ocean Eng.-ASCE 129 (6) (2003) 250260.
[51]Bouscasse, B., Colagrossi, A., Marrone, S., Antuono, M., Nonlinear water wave interaction with floating bodies in SPH, J. Fluids Struct. 42 (2013) 112129.
[52]Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D., Periaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys. 169 (2001) 363426.
[53]Monaghan, J. J., Particle methods for hydrodynamics, Comput. Phys. Rep. 3 (2) (1985) 71124.
[54]Hernquist, L., Katz, N., TreeSPH: A unification of SPH with the hierarchical tree method, Astrophys. J. Suppl. Ser. 70 (1989) 419446.
[55]Courant, R., Friedrichs, K., Lewy, H., On the partial difference equations of mathematical physics, IBM J. Res. Dev. 11 (2) (1967) 215234.
[56]Monaghan, J. J., Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys. 30 (1992) 543574.
[57]Kaufman, F. B., Thompson, D. B., Broadie, R. E., Jaso, M. A., Guthrie, W. L., Pearson, D. J., Small, M. B., Chemical-mechanical polishing for fabricating patterned W metal features as chip interconnects, J. Electrochem. Soc. 138 (11) (1991) 34603465.
[58]Zhao, Y., Chang, L., Kim, S. H., A mathematical model for chemical-mechanical polishing based on formation and removal of weakly bonded molecular species, Wear 254 (2003) 332339.
[59]Chang, L., On the CMP material removal at the molecular scale, J. Tribol.-Trans. ASME 129 (2) (2007) 436437.
[60]Hocheng, H., Tsai, H. Y., Su, Y. T., Modeling and experimental analysis of the material removal rate in the chemical mechanical planarization of dielectric films and bare silicon wafers, J. Electrochem. Soc. 148 (10) (2001) G581G586.
[61]Xin, J., Cai, W., Tichy, J. A., A fundamental model proposed for material removal in chemical-mechanical polishing, Wear 268 (2010) 837844.
[62]Feng, C., Yan, C., Tao, J., Zeng, X., Cai, W., A contact-mechanics-based model for general rough pads in chemical mechanical polishing processes, J. Electrochem. Soc. 156 (7) (2009) H601 H611.
[63]Antoci, C., Gallati, M., Sibilla, S., Numerical simulation of fluid-structure interaction by SPH, Comput. Struct. 85 (2007) 879890.
[64]Hamrock, B. J., Schmid, S. R., Jacobson, B. O., Fundamentals of Fluid Film Lubrication, 2nd Edition, Marcel Dekker, Inc., New York, USA, 2004.
[65]Fortes, A. F., Joseph, D. D., Lundgren, T. S., Nonlinear mechanics of fluidization of beds of spherical particles, J. Fluid Mech. 177 (1987) 467483.
[66]Hu, H. H., Joseph, D. D., Crochet, M. J., Direct simulation of fluid particle motions, Theor. Comput. Fluid Dyn. 3 (1992) 285306.
[67]Feng, Z.-G., Michaelides, E. E., The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J. Comput. Phys. 195 (2004) 602628.
[68]Uhlmann, M., An immersed boundary method with direct forcing for the simulation of par-ticulate flows, J. Comput. Phys. 209 (2005) 448476.
[69]Qin, K., Multi-scale Modeling of the Slurry Flow and the Material Removal in Chemical Mechanical Polishing, Ph.D. thesis, The University of Florida (2003).
[70]White, R. D., Mueller, A. J., Shin, M., Gauthier, D., Manno, V. P., Rogers, C. B., Measurement of microscale shear forces during chemical mechanical planarization, J. Electrochem. Soc. 158 (10) (2011) H1041H1051.
[71]Ilie, F., Models of nanoparticles movement, collision, and friction in chemical mechanical polishing (CMP), J. Nanopart. Res. 14 (3) (2012) 752.
[72]Singh, R. K., Lee, S.-M., Choi, K.-S., Bahar Basim, G., Choi, W., Chen, Z., Moudgil, B. M., Funda-mentals of slurry design for CMP of metal and dielectric materials, MRS Bull. 27 (10) (2002) 752760.


Feature-Scale Simulations of Particulate Slurry Flows in Chemical Mechanical Polishing by Smoothed Particle Hydrodynamics

  • Dong Wang (a1), Sihong Shao (a2), Changhao Yan (a1), Wei Cai (a1) (a3) and Xuan Zeng (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed