Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-21T12:28:26.125Z Has data issue: false hasContentIssue false

DelPhi Web Server: A Comprehensive Online Suite for Electrostatic Calculations of Biological Macromolecules and Their Complexes

Published online by Cambridge University Press:  03 June 2015

Subhra Sarkar
Affiliation:
Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA Department of Computer Science, Clemson University, Clemson, SC 29634, USA
Shawn Witham*
Affiliation:
Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA
Jie Zhang*
Affiliation:
Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA Department of Computer Science, Clemson University, Clemson, SC 29634, USA
Maxim Zhenirovskyy*
Affiliation:
Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA
Walter Rocchia*
Affiliation:
Drug Discovery and Development, Italian Institute of Technology, via Morego 30, 16163 Genova, Italy
Emil Alexov*
Affiliation:
Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA
Get access

Abstract

Here we report a web server, the DelPhi web server, which utilizes DelPhi program to calculate electrostatic energies and the corresponding electrostatic potential and ionic distributions, and dielectric map. The server provides extra services to fix structural defects, as missing atoms in the structural file and allows for generation of missing hydrogen atoms. The hydrogen placement and the corresponding DelPhi calculations can be done with user selected force field parameters being either Charmm22, Amber98 or OPLS. Upon completion of the calculations, the user is given option to download fixed and protonated structural file, together with the parameter and Delphi output files for further analysis. Utilizing Jmol viewer, the user can see the corresponding structural file, to manipulate it and to change the presentation. In addition, if the potential map is requested to be calculated, the potential can be mapped onto the molecule surface. The DelPhi web server is available from http://compbio.clemson.edu/delphi_webserver.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Gilson, M.K., Rashin, A., Fine, R., and Honig, B., On the calculation of electrostatic interactions in proteins. J Mol Biol, 1985. 184(3): p. 50316.Google Scholar
[2]Honig, B. and Nicholls, A., Classical electrostatics in biology and chemistry. Science, 1995. 268(5214): p. 11449.Google Scholar
[3]Russell, S.T. and Warshel, A., Calculations of electrostatic energies in proteins. The energetics of ionized groups in bovine pancreatic trypsin inhibitor. J Mol Biol, 1985. 185(2): p. 389404.Google Scholar
[4]Zhang, Z., Witham, S., and Alexov, E., On the role of electrostatics in protein-protein interactions. Phys Biol, 2011. 8(3): p. 035001.Google Scholar
[5]Harvey, S.C., Treatment of electrostatic effects in macromolecular modeling. Proteins, 1989. 5(1): p. 7892.CrossRefGoogle ScholarPubMed
[6]Lebard, D.N. and Matyushov, D.V., Protein-water electrostatics and principles of bioenergetics. Phys Chem Chem Phys, 2010. 12(47): p. 1533548.Google Scholar
[7]Guest, W.C., Cashman, N.R., and Plotkin, S.S., Electrostatics in the stability and misfolding of the prion protein: salt bridges, self energy, and solvation. Biochem Cell Biol, 2010. 88(2): p. 37181.CrossRefGoogle ScholarPubMed
[8]Laederach, A., Shcherbakova, I., Jonikas, M.A., Altman, R.B., and Brenowitz, M., Distinct contribution of electrostatics, initial conformational ensemble, and macromolecular stability in RNA folding. Proc Natl Acad Sci USA, 2007. 104(17): p. 704550.Google Scholar
[9]Avbelj, F and Fele, L., Role of main-chain electrostatics, hydrophobic effect and side-chain conformational entropy in determining the secondary structure of proteins. J Mol Biol, 1998. 279(3): p. 66584.Google Scholar
[10]Bertonati, C., Honig, B., and Alexov, E., Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies. Biophys J, 2007. 92(6): p. 18911899.Google Scholar
[11]Jensen, J.H., Calculating pH and salt dependence of protein-protein binding. Curr Pharm Biotechnol, 2008. 9(2): p. 96102.Google Scholar
[12]Spencer, D.S., Xu, K., Logan, T.M., and Zhou, H.X., Effects of pH, salt, and macromolecular crowding on the stability of FK506-binding protein: an integrated experimental and theoretical study. J Mol Biol, 2005. 351(1): p. 21932.Google Scholar
[13]Talley, K., Kundrotas, P., and Alexov, E., Modeling salt dependence of protein-protein association: Linear vs non-linear Poisson-Boltzmann equation. Commun Comput Phys, 2008. 3(5): p. 10711086.Google Scholar
[14]Yang, A.S. and Honig, B., On the pH dependence of protein stability. J Mol Biol, 1993. 231(2): p. 45974.CrossRefGoogle Scholar
[15]Mitra, R.C., Zhang, Z., and Alexov, E., In silico modeling of pH-optimum of protein-protein binding. Proteins-Structure Function and Bioinformatics, 2011. 79(3): p. 925936.Google Scholar
[16]Alexov, E., Numerical calculations of the pH of maximal protein stability. The effect of the sequence composition and three-dimensional structure. Eur J Biochem, 2004. 271(1): p. 17385.Google Scholar
[17]Yang, A.S., Gunner, M.R., Sampogna, R., Sharp, K., and Honig, B., On the calculation of pKas in proteins. Proteins, 1993. 15(3): p. 25265.Google Scholar
[18]Georgescu, R.E., Alexov, E.G., and Gunner, M.R., Combining conformational flexibility and continuum electrostatics for calculating pK(a)s in proteins. Biophys J, 2002. 83(4): p. 17311748.Google Scholar
[19]Tang, C.L., Alexov, E., Pyle, A.M., and Honig, B., Calculation of pK(a)s in RNA: On the structural origins and functional roles of protonated nucleotides. J Mol Biol, 2007. 366(5): p. 14751496.CrossRefGoogle ScholarPubMed
[20]Ma, B. and Nussinov, R., Explicit and implicit water simulations of a beta-hairpin peptide. Proteins, 1999. 37(1): p. 7387.Google Scholar
[21]Zhou, R., Free energy landscape of protein folding in water: explicit vs. implicit solvent. Proteins, 2003. 53(2): p. 14861.Google Scholar
[22]Druchok, M., Vlachy, V., and Dill, K.A., Explicit-water molecular dynamics study of a short-chain 3,3 ionene in solutions with sodium halides. J Chem Phys, 2009. 130(13): p. 134903.Google Scholar
[23]Kony, D.B., Damm, W., Stoll, S., van Gunsteren, W.F., and Hunenberger, P.H., Explicit-solvent molecular dynamics simulations of the polysaccharide schizophyllan in water. Biophys J, 2007. 93(2): p. 44255.Google Scholar
[24]Baker, N.A., Poisson-Boltzmann methods for biomolecular electrostatics. Methods Enzymol, 2004. 383: p. 94118.Google Scholar
[25]Gilson, M.K. and Honig, B., Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins, 1988. 4(1): p. 718.Google Scholar
[26]Lee, M.C., Yang, R., and Duan, Y., Comparison between Generalized-Born and Poisson-Boltzmann methods in physics-based scoring functions for protein structure prediction. J Mol Model, 2005. 12(1): p. 10110.Google Scholar
[27]Grochowski, P. and Trylska, J., Continuum molecular electrostatics, salt effects, and counterion binding-a review of the Poisson-Boltzmann theory and its modifications. Biopolymers, 2008. 89(2): p. 93113.Google Scholar
[28]Fogolari, F., Zuccato, P., Esposito, G., and Viglino, P., Biomolecular electrostatics with the linearized Poisson-Boltzmann equation. Biophys J, 1999. 76(1 Pt 1): p. 116.Google Scholar
[29]Brancato, G., Rega, N., and Barone, V., A hybrid explicit/implicit solvation method for first-principle molecular dynamics simulations. J Chem Phys, 2008. 128(14): p. 144501.CrossRefGoogle ScholarPubMed
[30]Kelly, C.P., Cramer, C.J., and Truhlar, D.G., Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants. J Phys Chem A, 2006. 110(7): p. 24939.Google Scholar
[31]Lieske, S.F., Yang, B., Eldefrawi, M.E., MacKerell, A.D. Jr., and Wright, J., (-)-3 beta-Substituted ecgonine methyl esters as inhibitors for cocaine binding and dopamine uptake. J Med Chem, 1998. 41(6): p. 86476.Google Scholar
[32]Spaeth, J.R., Kevrekidis, I.G., and Panagiotopoulos, A.Z., A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems. J Chem Phys, 2011. 134(16): p. 164902.CrossRefGoogle ScholarPubMed
[33]Tan, C., Yang, L., and Luo, R., How well does Poisson-Boltzmann implicit solvent agree with explicit solvent? A quantitative analysis. J Phys Chem B, 2006. 110(37): p. 186807.Google Scholar
[34]Rod, T.H., Rydberg, P., and Ryde, U., Implicit versus explicit solvent in free energy calculations of enzyme catalysis: Methyl transfer catalyzed by catechol O-methyltransferase. J Chem Phys, 2006. 124(17): p. 174503.Google Scholar
[35]Pham, T.T., Schiller, U.D., Prakash, J.R., and Dunweg, B., Implicit and explicit solvent models for the simulation of a single polymer chain in solution: Lattice Boltzmann versus Brownian dynamics. J Chem Phys, 2009. 131(16): p. 164114.Google Scholar
[36]Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A., and Honig, B., Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects. J Comput Chem, 2002. 23(1): p. 128137.Google Scholar
[37]Rocchia, W., Alexov, E., and Honig, B., Extending the applicability of the nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and multivalent ions. J Phys Chem B, 2001. 105(28): p. 65076514.Google Scholar
[38]Warwicker, J. and Watson, H.C., Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol, 1982. 157(4): p. 6719.Google Scholar
[39]Sharp, K.A. and Honig, B., Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem, 1990. 19: p. 30132.Google Scholar
[40]Rodriguez-Soca, Y., Munteanu, C.R., Dorado, J., Pazos, A., Prado-Prado, F.J., and Gonzalez-Diaz, H., Trypano-PPI: a web server for prediction of unique targets in trypanosome proteome by using electrostatic parameters of protein-protein interactions. J Proteome Res, 2010. 9(2): p. 118290.Google Scholar
[41]Richter, S., Wenzel, A., Stein, M., Gabdoulline, R.R., and Wade, R.C., webPIPSA: a web server for the comparison of protein interaction properties. Nucleic Acids Res, 2008. 36(Web Server issue): p. W27680.CrossRefGoogle ScholarPubMed
[42]Shazman, S., Celniker, G., Haber, O., Glaser, F., and Mandel-Gutfreund, Y., Patch Finder Plus (PFplus): a web server for extracting and displaying positive electrostatic patches on protein surfaces. Nucleic Acids Res, 2007. 35(Web Server issue): p. W52630.Google Scholar
[43]Unni, S., Huang, Y., Hanson, R.M., Tobias, M., Krishnan, S., Li, W.W., Nielsen, J.E., and Baker, N.A., Web servers and services for electrostatics calculations with APBS and PDB2PQR. J Comput Chem, 2011. 32(7): p. 148891.Google Scholar
[44]Miteva, M.A., Tuffery, P., and Villoutreix, B.O., PCE: web tools to compute protein continuum electrostatics. Nucleic Acids Res, 2005. 33(Web Server issue): p. W3725.Google Scholar
[45]Jo, S., Vargyas, M., Vasko-Szedlar, J., Roux, B., and Im, W., PBEQ-Solver for online visualization of electrostatic potential of biomolecules. Nucleic Acids Res, 2008. 36(Web Server issue): p. W2705.CrossRefGoogle ScholarPubMed
[46]Kinoshita, K., Murakami, Y., and Nakamura, H., eF-seek: prediction of the functional sites of proteins by searching for similar electrostatic potential and molecular surface shape. Nucleic Acids Res, 2007. 35(Web Server issue): p. W398402.Google Scholar
[47]Altschul, S.F., Gertz, E.M., Agarwala, R., Schaffer, A.A., and Yu, Y.K., PSI-BLAST pseudocounts and the minimum description length principle. Nucleic Acids Res, 2009. 37(3): p. 81524.Google Scholar
[48]Altschul, S.F. and Koonin, E.V., Iterated profile searches with PSI-BLAST-a tool for discovery in protein databases. Trends Biochem Sci, 1998. 23(11): p. 4447.Google Scholar
[49]Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389402.CrossRefGoogle ScholarPubMed
[50]Lee, M.M., Chan, M.K., and Bundschuh, R., SIB-BLAST: a web server for improved delineation of true and false positives in PSI-BLAST searches. Nucleic Acids Res, 2009. 37(Web Server issue): p. W536.Google Scholar
[51]Li, Y., Chia, N., Lauria, M., and Bundschuh, R., A performance enhanced PSI-BLAST based on hybrid alignment. Bioinformatics, 2011. 27(1): p. 317.Google Scholar
[52]Norel, R., Petrey, D., and Honig, B., PUDGE: a flexible, interactive server for protein structure prediction. Nucleic Acids Res, 2010. 38(Web Server issue): p. W5504.CrossRefGoogle ScholarPubMed
[53]MacCallum, R.M., Kelley, L.A., and Sternberg, M.J., SAWTED: structure assignment with text description-enhanced detection of remote homologues with automated SWISS-PROT annotation comparisons. Bioinformatics, 2000. 16(2): p. 1259.Google Scholar
[54]Roy, A., Kucukural, A., and Zhang, Y., I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc, 2010. 5(4): p. 72538.Google Scholar
[55]Zhang, Y., I-TASSER: fully automated protein structure prediction in CASP8. Proteins, 2009. 77 Suppl 9: p. 10013.Google Scholar
[56]Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., and Serrano, L., The FoldX web server: an online force field. Nucleic Acids Res, 2005. 33(Web Server issue): p. W3828.CrossRefGoogle ScholarPubMed
[57]Dehouck, Y., Kwasigroch, J.M., Gilis, D., and Rooman, M., PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics, 2011. 12(1): p. 151.Google Scholar
[58]Liu, I.H., Lo, Y.S., and Yang, J.M., PAComplex: a web server to infer peptide antigen families and binding models from TCR-pMHC complexes. Nucleic Acids Res, 2011. 39Suppl 2: p. W25460.Google Scholar
[59]Macindoe, G., Mavridis, L., Venkatraman, V., Devignes, M.D., and Ritchie, D.W., HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res, 2010. 38(Web Server issue): p. W4459.Google Scholar
[60]Petrey, D., Xiang, Z., Tang, C.L., Xie, L., Gimpelev, M., Mitros, T., Soto, C.S., Goldsmith-Fischman, S., Kernytsky, A., Schlessinger, A., Koh, I.Y., Alexov, E., and Honig, B., Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling. Proteins, 2003. 53 Suppl 6: p. 4305.Google Scholar
[61]Ren, P. and Ponder, J.W., Tinker polarizable atomic multipole force field for proteins. Abstracts of Papers of the American Chemical Society, 2002. 224: p. U473U473.Google Scholar
[62]Ren, P.Y. and Ponder, J.W., Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B, 2003. 107(24): p. 59335947.Google Scholar
[63]Ponder, J.W. and Case, D.A., Force fields for protein simulations. Adv Protein Chem, 2003. 66: p. 2785.Google Scholar
[64]Brooks, B.R., Brooks, C.L., 3rd, Mackerell, A.D. Jr., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., and Karplus, M., CHARMM: the biomolecular simulation program. J Comput Chem, 2009. 30(10): p. 1545614.Google Scholar
[65]Kahn, K. and Bruice, T.C., Parameterization of OPLS-AA force field for the conformational analysis of macrocyclic polyketides. J Comput Chem, 2002. 23(10): p. 97796.CrossRefGoogle ScholarPubMed
[66]Kony, D., Damm, W., Stoll, S., and Van Gunsteren, W.F., An improved OPLS-AA force field for carbohydrates. J Comput Chem, 2002. 23(15): p. 141629.Google Scholar
[67]Xu, Z., Luo, H.H., and Tieleman, D.P., Modifying the OPLS-AA force field to improve hydration free energies for several amino acid side chains using new atomic charges and an off-plane charge model for aromatic residues. J Comput Chem, 2007. 28(3): p. 68997.Google Scholar
[68]Sitkoff, D., Lockhart, D.J., Sharp, K.A., and Honig, B., Calculation of electrostatic effects at the amino terminus of an alpha helix. Biophys J, 1994. 67(6): p. 225160.Google Scholar
[69]Sitkoff, D., Sharp, K.A., and Honig, B., Correlating solvation free energies and surface tensions of hydrocarbon solutes. Biophys Chem, 1994. 51(2-3): p. 397403; discussion 404-9.Google Scholar
[70] Preprocessor P.H.; Available from: http://www.php.net.Google Scholar
[71] Language H.H.M.-u.; Available from: http://www.w3.org/TR/html401/.Google Scholar
[72] Perl. Available from: http://www.perl.org/.Google Scholar
[73] database, M.T.w.s.m.p.o.-s.; Available from: http://www.mysql.com/.Google Scholar
[74]Chen, D.A., Chen, Z., Chen, C.J., Geng, W.H., and Wei, G.W., Software News and Update MIBPB: A Software Package for Electrostatic Analysis. J Comput Chem, 2011. 32(4): p. 756770.Google Scholar
[75]Geng, W.H., Yu, S.N., and Wei, G.W., Treatment of charge singularities in implicit solvent models. J Chem Phys, 2007. 127(11): 114106.Google Scholar
[76]Kim, J.I., Duschner, H., Born, H.J., and Hashimoto, T., Preferential Solvation of Single Ions – Determination of Standard Free-Energies of Transfer for U-(+4), Uo2-(+2), Ucl6-(-2) and Uo2cl4-(-2) Ions from Water to Mixed Aqueous-Ethanol Solvents. Zeitschrift Fur Physikalis-he Chemie-Frankfurt, 1976. 103(1-4): p. 1530.Google Scholar
[77]Ratnaparkhi, G.S., Ramachandran, S., Udgaonkar, J.B., and Varadarajan, R., Discrepancies between the NMR and X-ray structures of uncomplexed barstar: analysis suggests that packing densities of protein structures determined by NMR are unreliable. Biochemistry, 1998. 37(19): p. 695866.Google Scholar
[78]Kouranov, A., Xie, L., de la Cruz, J., Chen, L., Westbrook, J., Bourne, P.E., and Berman, H.M., The RCSB PDB information portal for structural genomics. Nucleic Acids Res, 2006. 34(Database issue): p. D3025.Google Scholar