Skip to main content Accessibility help
×
Home

Correlation Functions, Universal Ratios and Goldstone Mode Singularities in n-Vector Models

  • J. Kaupužs (a1) (a2), R. V. N. Melnik (a3) and J. Rimšāns (a1) (a2)

Abstract

Correlation functions in the (n) models below the critical temperature are considered. Based on Monte Carlo (MC) data, we confirm the fact stated earlier by Engels and Vogt, that the transverse two-plane correlation function of the (4) model for lattice sizes about L = 120 and small external fields h is very well described by a Gaussian approximation. However, we show that fits of not lower quality are provided by certain non-Gaussian approximation. We have also tested larger lattice sizes, up to L = 512. The Fourier-transformed transverse and longitudinal two-point correlation functions have Goldstone mode singularities in the thermodynamic limit at k → 0 and h = +0, i.e., G (k) ≃ ak–λ⊥ and G(k)≃bk–λ, respectively. Here a and b are the amplitudes, k = |k| is the magnitude of the wave vector k. The exponents λ, λ and the ratio bM2/a2, where M is the spontaneous magnetization, are universal according to the GFD (grouping of Feynman diagrams) approach. Here we find that the universality follows also from the standard (Gaussian) theory, yielding bM2/a2=(n−1)/16. Our MC estimates of this ratio are 0.06±0.01 for n=2, 0.17±0.01 for n = 4 and 0.498±0.010 for n = 10. According to these and our earlier MC results, the asymptotic behavior and Goldstone mode singularities are not exactly described by the standard theory. This is expected from the GFD theory. We have found appropriate analytic approximations for G(k) and G(k), well fitting the simulation data for small k. We have used them to test the Patashinski-Pokrovski relation and have found that it holds approximately.

Copyright

Corresponding author

Corresponding author.Email:kaupuzs@latnet.lv

References

Hide All
[1]Lawrie, I. D., Goldstone modes and coexistence in isotropic N-vector models, J. Phys. A, 14, 14 (1981), 24892502.
[2]Lawrie, I. D., Goldstone mode singularities in specific heats and non-ordering susceptibilities of isotropic systems, J. Phys. A, 18 (1985), 11411152.
[3]Hasenfratz, P. and Leutwyler, H., Goldstone boson related finite size effects in field theory and critical phenomena with O(n) symmetry, Nucl. Phys., B343 (1990), 241284.
[4]Täuber, U. C. and Schwabl, F., Critical dynamics of the O(n)-symmetric relaxational models below the transition temperature, Phys. Rev. B, 46 (1992), 33373361.
[5]Schäfer, L. and Horner, H., Goldstone mode singularities and equation of state of an isotropic magnet, Z. Phys. B, 29 (1978), 251.
[6]Anishetty, R., Basu, R., Hari, N. D. Dass and Sharatchandra, H. S., Infrared behaviour of systems with goldstone bosons, Int. J. Mod. Phys., A14 (1999), 34673496.
[7]Dupuis, N., Infrared behavior in systems with a broken continuous symmetry: classical O(N) model versus interacting bosons, Phys. Rev. E, 83 (2011), 031120.
[8]Brézin, E. and Wallace, D. J., Critical behavior of a classical heisenberg ferromagnet with many degrees of freedom, Phys. Rev. B, 7 (1973), 19671974.
[9]Wallace, D. J. and Zia, R. K., Singularities induced by Goldstone modes, Phys. Rev. B, 12 (1975), 53405342.
[10]Nelson, D. R., Coexistence-curve singularities in isotropic ferromagnets, Phys. Rev. B, 13 (1976), 22222230.
[11]Brézin, E. and Zinn-Justin, J., Spontaneous breakdown of continuous symmetries near two dimensions, Phys. Rev. B, 14 (1976), 31103120.
[12]Dimitrović, I., Hasenfratz, P., Nager, J. and Niedermayer, F., Finite-size effects, goldstone bosons and critical exponents in the d=3 Heisenberg model, Nucl. Phys., B350 (1991), 893–950.
[13]Engels, J. and Mendes, T., Goldstone-mode effects and scaling function for the three-dimensional O(4) model, Nucl. Phys., B572 (2000), 289304.
[14]Engels, J., Holtman, S., Mendes, T. and Schulze, T., Equation of state and goldstone-mode effects of the three-dimensional O(2) model, Phys. Lett. B, 492 (2000), 219227.
[15]Engels, J. and Vogt, O., Longitudinal and transverse spectral functions in the three-dimensional model, Nucl. Phys., B 832 (2010), 538566.
[16]Kaupužs, J., Melnik, R. V. N. and Rimšāns, J., Advanced Monte Carlo study of the Goldstone mode singularity in the 3D XY model, Commun. Comput. Phys., 4 (2008), 124134.
[17]Kaupuz, J.ˇs, Melnik, R. V. N. and Rimša¯ns, J., Monte Carlo estimation of transverse and longitudinal correlation functions in the O(4) model, Phys. Lett. A, 374 (2010), 19431950.
[18]Kaupuz, J.ˇs, Canadian Phys, J., 9 (2012), 373.
[19]Kaupužs, J., Melnik, R. V. N. and Rimša¯ns, J., Goldstone mode singularities in O(n) models, Condensed Matter Phys., 15 (2012), 43005.
[20]Kaupužs, J., Longitudinal and transverse correlation functions in the ϕ 4 model below and near the critical point, Progress of Theoretical Phys., 124 (2010), 613643.
[21]Kaupužs, J., Int. J. Mod. Phys., A27 (2012), 1250114.
[22]Dohm, V., Crossover from Goldstone to critical fluctuations: casimir forces in confined-symmetric systems, Rev. Lett., 110 (2013), 107207.
[23]Butera, P. and Comi, M., Critical specific heats of the N-vector spin models on the simple cubic and bcc lattices, Phys. Rev. B, 60 (1999), 67496760.
[24]Ite, K. R. and Tamura, H., Commun. Math. Phys., 202 (1999), 127.
[25]Newman, M. E. J. and Barkema, G. T., Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford, 1999
[26]Erdélyi, A., Asymptotic representations of Fourier integrals and the method of stationary phase, J. Soc. Indust. Appl. Math., 3 (1955), 1727.
[27]Fedoriuk, , Asymptotics Integrals and Series, Nauka, Moscow, 1987.
[28]Kötzler, J., Görlitz, D., Dombrowski, R. and Pieper, M., Z. Phys., B94 (1994), 9.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed