[1]Lawrie, I. D., Goldstone modes and coexistence in isotropic *N*-vector models, J. Phys. A, 14, 14 (1981), 2489–2502.

[2]Lawrie, I. D., Goldstone mode singularities in specific heats and non-ordering susceptibilities of isotropic systems, J. Phys. A, 18 (1985), 1141–1152.

[3]Hasenfratz, P. and Leutwyler, H., Goldstone boson related finite size effects in field theory and critical phenomena with O(*n*) symmetry, Nucl. Phys., B343 (1990), 241–284.

[4]Täuber, U. C. and Schwabl, F., Critical dynamics of the O(*n*)-symmetric relaxational models below the transition temperature, Phys. Rev. B, 46 (1992), 3337–3361.

[5]Schäfer, L. and Horner, H., Goldstone mode singularities and equation of state of an isotropic magnet, Z. Phys. B, 29 (1978), 251.

[6]Anishetty, R., Basu, R., Hari, N. D. Dass and Sharatchandra, H. S., Infrared behaviour of systems with goldstone bosons, Int. J. Mod. Phys., A14 (1999), 3467–3496.

[7]Dupuis, N., Infrared behavior in systems with a broken continuous symmetry: classical O(*N*) model versus interacting bosons, Phys. Rev. E, 83 (2011), 031120.

[8]Brézin, E. and Wallace, D. J., Critical behavior of a classical heisenberg ferromagnet with many degrees of freedom, Phys. Rev. B, 7 (1973), 1967–1974.

[9]Wallace, D. J. and Zia, R. K., Singularities induced by Goldstone modes, Phys. Rev. B, 12 (1975), 5340–5342.

[10]Nelson, D. R., Coexistence-curve singularities in isotropic ferromagnets, Phys. Rev. B, 13 (1976), 2222–2230.

[11]Brézin, E. and Zinn-Justin, J., Spontaneous breakdown of continuous symmetries near two dimensions, Phys. Rev. B, 14 (1976), 3110–3120.

[12]Dimitrović, I., Hasenfratz, P., Nager, J. and Niedermayer, F., Finite-size effects, goldstone bosons and critical exponents in the *d*=3 Heisenberg model, Nucl. Phys., B350 (1991), 893–950.

[13]Engels, J. and Mendes, T., Goldstone-mode effects and scaling function for the three-dimensional O(4) model, Nucl. Phys., B572 (2000), 289–304.

[14]Engels, J., Holtman, S., Mendes, T. and Schulze, T., Equation of state and goldstone-mode effects of the three-dimensional O(2) model, Phys. Lett. B, 492 (2000), 219–227.

[15]Engels, J. and Vogt, O., Longitudinal and transverse spectral functions in the three-dimensional model, Nucl. Phys., B 832 (2010), 538–566.

[16]Kaupužs, J., Melnik, R. V. N. and Rimšāns, J., Advanced Monte Carlo study of the Goldstone mode singularity in the 3D *XY* model, Commun. Comput. Phys., 4 (2008), 124–134.

[17]Kaupuz, J.ˇs, Melnik, R. V. N. and Rimša¯ns, J., Monte Carlo estimation of transverse and longitudinal correlation functions in the O(4) model, Phys. Lett. A, 374 (2010), 1943–1950.

[18]Kaupuz, J.ˇs, Canadian Phys, J., 9 (2012), 373.

[19]Kaupužs, J., Melnik, R. V. N. and Rimša¯ns, J., Goldstone mode singularities in O(*n*) models, Condensed Matter Phys., 15 (2012), 43005.

[20]Kaupužs, J., Longitudinal and transverse correlation functions in the *ϕ* ^{4} model below and near the critical point, Progress of Theoretical Phys., 124 (2010), 613–643.

[21]Kaupužs, J., Int. J. Mod. Phys., A27 (2012), 1250114.

[22]Dohm, V., Crossover from Goldstone to critical fluctuations: casimir forces in confined-symmetric systems, Rev. Lett., 110 (2013), 107207.

[23]Butera, P. and Comi, M., Critical specific heats of the *N*-vector spin models on the simple cubic and bcc lattices, Phys. Rev. B, 60 (1999), 6749–6760.

[24]Ite, K. R. and Tamura, H., Commun. Math. Phys., 202 (1999), 127.

[25]Newman, M. E. J. and Barkema, G. T., Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford, 1999

[26]Erdélyi, A., Asymptotic representations of Fourier integrals and the method of stationary phase, J. Soc. Indust. Appl. Math., 3 (1955), 17–27.

[27]Fedoriuk, , Asymptotics Integrals and Series, Nauka, Moscow, 1987.

[28]Kötzler, J., Görlitz, D., Dombrowski, R. and Pieper, M., Z. Phys., B94 (1994), 9.