Skip to main content Accessibility help
×
Home

Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects

  • A. J. Torregrosa (a1), S. Hoyas (a1), M. J. Pérez-Quiles (a2) and J. M. Mompó-Laborda (a1)

Abstract

In this article the instabilities appearing in a liquid layer are studied numerically by means of the linear stability method. The fluid is confined in an annular pool and is heated from below with a linear decreasing temperature profile from the inner to the outer wall. The top surface is open to the atmosphere and both lateral walls are adiabatic. Using the Rayleigh number as the only control parameter, many kind of bifurcations appear at moderately low Prandtl numbers and depending on the Biot number. Several regions on the Prandtl-Biot plane are identified, their boundaries being formed from competing solutions at codimension-two bifurcation points.

Copyright

Corresponding author

Corresponding author.Email:serhocal@mot.upv.es

References

Hide All
[1]Bénard, H., Les tourbillons cellulaires dans une nappe liquide, Rev. Gén. Sci. Pures Appl., 11 (1900), 12611271.
[2]Bernardi, C. and Maday, J., Approximations Spectrales de Problemes aux Limites Elliptiques, Springer-Verlag, Paris, 1992.
[3]Burguete, J., Mokolobwiez, N., Daviaud, F., Garnier, N. and Chiffaudel, A., Local Marangoni number at the onset of hydrothermal waves, Phys. Fluids, 13 (2001), 27732787.
[4]Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A., Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.
[5]Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Dover Publications, New York, 1981.
[6]Daviaud, F. and Vince, J. M., Traveling waves in a fluid layer subjected to a horizontal temperature gradient, Phys. Rev. E, 48 (1993), 44324436.
[7]Ezersky, A. B., Garcimartín, A., Burguete, J., Mancini, H. L. and Pérez-García, C., Hydrothermal waves in Marangoni convection in a cylindrical container, Phys. Rev. E, 47 (1993), 11261131.
[8]Garnier, N. and Chiffaudel, A., Two dimensional hydrothermal waves in an extended cylindrical vessel, Europhys. J. B, 19 (2001), 87.
[9]Ganier, N., PhD thesis, http://nicolasgarnier.free.fr/these-garnier.pdf, 2002.
[10]Herrero, H. and Mancho, A. M., Influence of aspect ratio in convection due to nonuniform heating, Phys. Rev. E, 57 (1998), 73367339.
[11]Herrero, H., Hoyas, S.Donoso, A., Mancho, A. M., Chacon, J. M., Portugues, R. F. and Yeste, B., Chebyshev collocation for a convective problem in primitive variable formulation, J. Sci. Comput., 18(2) (2003), 315328.
[12]Hoyas, S., Herrero, H. and Mancho, A. M., Thermal convection in a cylindrical annulus heated laterally, J. Phys. A Math and Gen., 35 (2002), 40674083.
[13]Hoyas, S., Herrero, H. and Mancho, A. M., Instabilities in a laterally heated liquid layer, Phys. Rev. E, 66 (2002), 057301.
[14]Hoyas, S., Herrero, H., Mancho, A. M., Garnier, N. and Chiffaudel, A., Phys. Fluids 1(7) (2005), 054104.
[15]Mancho, A. M., Herrero, H. and Burguete, J., Primary instabilities in convective cells due to nonuniform heating, Phys. Rev. E, 56 (1997), 29162923.
[16]Mancho, A. M. and Herrero, H., Instabilities in a laterally heated liquid layer, Phys. Fluids, 12 (2000), 10441052.
[17]Mercier, J. F. and Normand, C., Buoyant-thermocapillary instabilities of differentially heated liquid layers, Phys. Fluids, 8 (1996), 14331445.
[18]Navarro, M. C., Herrero, H, Mancho, A. M. and Wathen, A., Efficient solution of a generalized eigenvalue problem arising in a thermoconvective instability, Commun. Comput. Phys., 3(2) (2008), 308329.
[19]Navarro, M. C., Herrero, H. and Hoyas, S., Chebyshev collocation for optimal control in a thermoconvective flow, Commun. Comput. Phys., 5(2-4) (2009), 649666.
[20]Pardo, R., Herrero, H. and Hoyas, S., Theoretical study of a Benard-Marangoni problem, J. Math. Anal. Appl., 376(1) (2011), 231246.
[21]Pelacho, M. A. and Burguete, J., Temperature oscillations of hydrothermal waves in thermocapillary-buoyancy convection, Phys. Rev. E, 59 (1999), 835840.
[22]Riley, R. J. and Neitzel, G. P., Instability of thermocapillary-buoyancy convection in shallow layers, part 1, characterization of steady and oscillatory instabilities, J. Fluid Mech., 359 (1998), 143164.
[23]Peng, L., Li, Y. R., Shi, W. Y. and Imaishi, N., Three-dimensional thermocapillary-buoyancy flow of silicone oil in a differentially heated annular pool, Int J. Heat Mass Tran., 50(5-6) (2007), 872880.
[24]Schwabe, D., Zebib, A. and Sim, B. C., Oscillatory thermocapillary convection in open cylindrical annuli, part 1, experiments under microgravity, J. Fluid Mech., 491 (2003), 239258.
[25]Shi, W. Y., Ermakov, M. K., Li, Y. R., Peng, L. and Imaishi, N., Influence of Buoyancy force on thermocapillary convection instability in the differentially heated annular pools of silicon melt, Microgravity Sci. Tech., 21 (2009), S289S297.
[26]Sh, W. Y. and Peng, L., J. Eng. Thermophys-Rus, 21(2) (2011), 250254.
[27]Shi, W. Y., Liu, X., Li, G. Y., Li, Y. R., Peng, L., Ermakov, M. K. and Imaishi, N., Thermocapillary convection instability in shallow annular pools by linear stability analysis, J. Supercond Nov. Magn., 23(6) (2010), 11851188.
[28]Smith, M. K. and Davis, S. H., Instability of dynamic thermocapillary liquid bridge I: convective instability, J. Fluid Mech., 132 (1983), 119144.

Keywords

Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects

  • A. J. Torregrosa (a1), S. Hoyas (a1), M. J. Pérez-Quiles (a2) and J. M. Mompó-Laborda (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed