Skip to main content Accessibility help
×
Home

An Iterative Discontinuous Galerkin Method for Solving the Nonlinear Poisson Boltzmann Equation

  • Peimeng Yin (a1), Yunqing Huang (a1) and Hailiang Liu (a2)

Abstract

An iterative discontinuous Galerkin (DG) method is proposed to solve the nonlinear Poisson Boltzmann (PB) equation. We first identify a function space in which the solution of the nonlinear PB equation is iteratively approximated through a series of linear PB equations, while an appropriate initial guess and a suitable iterative parameter are selected so that the solutions of linear PB equations are monotone within the identified solution space. For the spatial discretization we apply the direct discontinuous Galerkin method to those linear PB equations. More precisely, we use one initial guess when the Debye parameter λ = (1), and a special initial guess for λ ≫1 to ensure convergence. The iterative parameter is carefully chosen to guarantee the existence, uniqueness, and convergence of the iteration. In particular, iteration steps can be reduced for a variable iterative parameter. Both one and two-dimensional numerical results are carried out to demonstrate both accuracy and capacity of the iterative DG method for both cases of λ = (1) and λ ≪ 1. The (m + 1)th order of accuracy for L2 and mth order of accuracy for H1 for Pm elements are numerically obtained.

Copyright

Corresponding author

Corresponding author.Email:hliu@iastate.edu

References

Hide All
[1]Holst, M., McCammom, J. A., Yu, Z., Zhou, Y. C., Zhu, Y.Adaptive finite element modeling techniques for the Poisson-Boltzmann equation. Commun. Comput. Phys., 11(1):179214, 2012/01.
[2]Debye, P., Hiickel, E.Zur theorie der elektrolyte. Phys. Zeitschr., 24: 185206, 1923.
[3]Kirkwood, J. G.On the theory of strong electrolyte solutions. J. Chem. Phys., 2:767781, 1934.
[4]Boschitsch, A. H., Fenley, M. O.Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation. J. Comput. Chem., 25(7):935955, 2004.
[5]Baker, N. A., Sept D., D., Joseph, S., Holst, M. J., McCammon, J. A.Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA, 98:1003710041,2001.
[6]Qiao, Z.-H., Li, Z.-L., Tang, T.A finite difference scheme for solving the nonlinear Poisson-Boltzmann equation modeling charged spheres. J. Comput. Math., 24(3):252264,2006/03.
[7]Colella, Phillip, Dorr, Milo R, Wake, Daniel D. A conservative finite difference method for the numerical solution of plasma fluid equations. J. Comput. Phys., 149(1): 168193, 1999.
[8]Chen, L., Holst, M. J., Xu, J.The finite element approximation of the nonlinear Poisson-Boltzmann equation. SIAM J. Numer. Anal., 45(6): 22982320, 2007.
[9]Lu, B., Cheng, X., Huang, J.AFMPB: An adaptive fast multipole Poisson-Boltzmann solver for calculating electrostatics in biomolecular systems. C. Phys. Commun., 181(6):11501160, 2010.
[10]Degond, P., Liu, H., Savelief, D., Vignal, M. H.Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit. J. Sci. Comput., 51: 5986, 2012.
[11]Liu, H., Yan, J.The Direct Discontinuous Galerkin (DDG) method for diffusion problems. SIAM Journal on Numerical Analysis., 47(1): 675698,2009.
[12]Liu, H., Yan, J.The Direct Discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys., 8(3): 541564,2010.
[13]Huang, Y., Liu, H., Yi, N.Recovery of normal derivatives from the piecewise L2 projection. J. Comput. Phys., 231(4): 12301243, 2012.
[14]Oberoi, H., Allewell, N. M.Multigrid solution of the nonlinear Poisson-Boltzmann equation and calculation of titration curves. Biophys J., 65(1): 4855, 1993.
[15]Nicholls, A., Honig, B.A rapid finite difference algorithm, utilizing successive overrelaxation to solve the Poisson-Boltzmann equation. Journal of Computational Chemistry, 12(4): 435445, 1991.
[16]Davis, M. E., McCammon, J. A.Solving the finite difference linearized Poisson-Boltzmann equation: A comparison of relaxation and conjugate gradient methods. Journal of Computational Chemistry, 10(3): 386391, 1989.
[17]Deng, Y., Chen, G., Ni, W., Zhou, J.Boundary element monotone iteration scheme for semilinear elliptic partial differential equations. Mathematics of Computation, 65(215):943982, 1996.
[18]Shampine, L. F.Monotone iterations and two-sided convergence. SIAM Journal on Numerical Analysis, 3(4): 607615, 1996.
[19]Chern, I., Liu, J., Wang, W.Accurate evaluation of electrostatics for macromolecules in solution. Methods and Applications of Analysis, 10(2): 309328, 2003.
[20]Quarteroni, A., Valli, A.Numerical approximation of partial differential equations. Springer Series in Computational Mathematics, 2008.
[21]Evans, L. C.Partial differential equations. American Mathematics Society, 19, 2010.
[22]Lions, J. L., Magenes, E.Non-Homogeneous Boundary Value Problems and Applications. New-York: Springer-Verlag, 1972.
[23]Liu, H., Yu, H.The entropy satisfying discontinuous Galerkin method for Fokker-Planck equations. Journal on Scientific Computing, accepted (2014).
[24]Liu, H.Optimal error estimates of the Direct Discontinuous Galerkin method for convection-diffusion equations. Math. Comp., to appear (2014).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed