Skip to main content Accessibility help

ADI-FDTD Method for Two-Dimensional Transient Electromagnetic Problems

  • Wanshan Li (a1), Yile Zhang (a2), Yau Shu Wong (a2) and Dong Liang (a3)


An efficient and accurate numerical scheme is proposed for solving the transverse electric (TE) mode electromagnetic (EM) propagation problem in two-dimensional earth. The scheme is based on the alternating direction finite-difference time-domain (ADI-FDTD) method. Unlike the conventional upward continuation approach for the earth-air interface, an integral formulation for the interface boundary is developed and it is effectively incorporated to the ADI solver. Stability and convergence analysis together with an error estimate are presented. Numerical simulations are carried out to validate the proposed method, and the advantage of the present method over the popular Du-Fort-Frankel scheme is clearly demonstrated. Examples of the electromagnetic field propagation in the ground with anomaly further verify the effectiveness of the proposed scheme.


Corresponding author

*Corresponding author. Email (W. Li), (Y. Zhang), (Y. S. Wong), (D. Liang)


Hide All
[1]Adhidjaja, J. I., Hohmann, G. W. and Oristaglio, M. L., Two-dimensional transient electromagnetic responses, Geophysics, 50 (1985), 28492861.
[2]Chen, W., Li, X. and Liang, D., Symmetric energy-conserved splitting FDTD scheme for the Maxwell's equations, Comm. Comput. Phys., 6 (2009), 804825.
[3]Chung, Y., Son, J.-S., Lee, T. J., Kim, H. J. and Shin, C., Three-dimensional modelling of controlled-source electromagnetic surveys using an edge finite-element method with a direct solver, Geophys. Prospect., 62 (2014), 14681483.
[4]Commer, M. and Newman, G., A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources, Geophysics, 69 (2004), 11921202.
[5]Constable, S. and Weiss, C. J., Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling, Geophysics, 71 (2006), G43G51.
[6]da Silva, N. V., Morgan, J. V., MacGregor, L. and Warner, M., A finite element multifrontal method for 3D CSEM modeling in the frequency domain, Geophysics, 77 (2012), E101E115.
[7]Everett, M. and Edwards, R., Transient marine electromagnetics: the 2.5-D forward problem, Geophys. J. Int., 113 (1993), 545561.
[8]Freund, R. W. and Nachtigal, N. M., An implementation of the QMR method based on coupled two-term recurrences, SIAM J. Sci. Comput., 15 (1994), 313337.
[9]Gao, L. and Liang, D., New energy-conserved identities and super-convergence of the symmetric EC-S-FDTD scheme for Maxwell's equations in 2D, Comm. Comput. Phys., 11 (2012), 16731696.
[10]Goldman, Y., Hubans, C., Nicoletis, S. and Spitz, S., A finite-element solution for the transient electromagnetic response of an arbitrary two-dimensional resistivity distribution, Geophysics, 51 (1986), 14501461.
[11]Grayver, A., Streich, R. and Ritter, O., Three-dimensional parallel distributed inversion of CSEM data using a direct forward solver, Geophys. J. Int., 193 (2013), 14321446.
[12]Grayver, A. V. and Bürg, M., Robust and scalable 3-D geo-electromagnetic modelling approach using the finite element method, Geophys.J. Int., 198 (2014), 110125.
[13]Gronwall, T. H., Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math., 20 (1919), 292296.
[14]Haber, E. and Ascher, U. M., Fast finite volume simulation of 3D electromagnetic problems with highly discontinuous coefficients, SIAM J. Sci. Comput., 22 (2001), 19431961.
[15]Haber, E. and Schwarzbach, C., Parallel inversion of large-scale airborne time-domain electromagnetic data with multiple octree meshes, Inverse Prob., 30 (2014), 055011.
[16]Huang, J. and Wood, A., Analysis and numerical solution of transient electromagnetic scattering from overfilled cavities, Comm. Comput. Phys., 1 (2006), 10431055.
[17]Huang, J., Wood, A. W. and Havrilla, M.J., A hybrid finite element-Laplace transform method for the analysis of transient electromagnetic scattering by an over-filled cavity in the ground plane, Comm. Comput. Phys., 5 (2009), 126141.
[18]Jiang, X., Zhang, L. and Zheng, W., Adaptive hp-finite element computations for time-harmonic Maxwells equations, Comm. Comput. Phys., 13 (2013), 559582.
[19]Jim, Douglas Jr., On the numerical integration by implicit methods, J. Soc. Ind. Appl. Math., 3 (1955), 4265.
[20]Key, K. and Ovall, J., A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling, Geophys. J. Int., 186 (2011), 137154.
[21]Koldan, J., Puzyrev, V., de la Puente, J., Houzeaux, G. and Cela, J. M., Algebraic multigrid pre-conditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics, Geophys. J. Int., 197 (2014), 14421458.
[22]Kuo, J. T. and Cho, D.-h., Transient time-domain electromagnetics, Geophysics, 45 (1980), 271291.
[23]Lee, K. H., Electromagnetic scattering by two-dimensional inhomogeneity due to an oscillating magnetic dipole, California Univ., Berkeley (USA), 1978.
[24]Leppin, M., Electromagnetic modeling of 3-D sources over 2-D inhomogeneities in the time domain, Geophysics, 57 (1992), 9941003.
[25]Maaø, R. A., Fast finite-difference time-domain modeling for marine-subsurface electromagnetic problems, Geophysics, 72 (2007), A19A23.
[26]Mukherjee, S. and Everett, M. E., 3D controlled-source electromagnetic edge-based finite element modeling of conductive and permeable heterogeneities, Geophysics, 76 (2011), F215F226.
[27]Namiki, T., A new FDTD algorithm based on alternating-direction implicit method, IEEE Trans. Microwave Theory Tech., 47 (1999), 20032007.
[28]Oristaglio, M. L. and Hohmann, G. W., Diffusion of electromagnetic fields into a two-dimensional earth: A finite-difference approach, Geophysics, 49 (1984), 870894.
[29]Peaceman, D. W. and Rachford, H. H. Jr., The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 3 (1955), 2841.
[30]Puzyrev, V., Koldan, J., de la Puente, J., Houzeaux, G., Vázquez, M. and Cela, J. M., A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling, Geophys. J. Int., 193 (2013), 678693.
[31]Ren, Z., Kalscheuer, T., Greenhalgh, S. and Maurer, H., A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling, Geophys. J. Int., 194 (2013), 700718.
[32]Schwarzbach, C. and Haber, E., Finite element based inversion for time-harmonic electromagnetic problems, Geophys. J. Int., 193 (2013), 615634.
[33]Sheu, W. H. T., Liang, L. Y. and Li, J.-H., Development of an explicit symplectic scheme that optimizes the dispersion-relation equation for the Maxwell's equations, Comm. Comput. Phys., 13 (2013), 11071133.
[34]Sommer, M., Hölz, S., Moorkamp, M., Swidinsky, A., Heincke, B., Scholl, C. and Jegen, M., GPU parallelization of a three dimensional marine CSEM code, Comput. Geosci., 58 (2013), 9199.
[35]Streich, R., 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy, Geophysics, 74 (2009), F95F105.
[36]Streich, R., Becken, M. and Ritter, O., 2.5D controlled-source EM modeling with general 3D source geometries, Geophysics, 76 (2011), F387F393.
[37]Sun, Y. and Tao, F., Symplectic and multisymplectic numerical methods for Maxwell's equations, J. Comput. Phys., 230 (2011), 20762094.
[38]Taflove, A., Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems, IEEE Trans. Electromagn. Compat., 22 (1980), 191202.
[39]Thomas, L., Elliptic problems in linear difference equations over a network, Technique report, Watson Scientific Computing Laboratory, Columbia University, New York, 1949.
[40]Um, E. S., Commer, M. and Newman, G. A., Efficient pre-conditioned iterative solution strategies for the electromagnetic diffusion in the earth: finite-element frequency-domain approach, Geophys. J. Int, 193 (2013), 14601473.
[41]Um, E. S., Harris, J. M. and Alumbaugh, D. L., 3D time-domain simulation of electromagnetic diffusion phenomena: A finite-element electric-field approach, Geophysics, 75 (2010), F115F126.
[42]Wang, T. and Hohmann, G. W., A finite-difference, time-domain solution for three-dimensional electromagnetic modeling, Geophysics, 58 (1993), 797809.
[43]Xie, Z., Wang, B. and Zhang, Z., Space-time discontinuous Galerkin method for Maxwell's equations, Comm. Comput. Phys., 14 (2013), 916939.
[44]Yee, K. al., Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media, IEEE Trans. Antennas Propag, 14 (1966), 302307.
[45]Zaslavsky, M., Druskin, V., Davydycheva, S., Knizhnerman, L., Abubakar, A. and Habashy, T., Hybrid finite-difference integral equation solver for 3D frequency domain anisotropic electromagnetic problems, Geophysics, 76 (2011), F123F137.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed