Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-nqqt6 Total loading time: 0.272 Render date: 2022-07-04T08:56:39.350Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Stochastic Multi-Symplectic Integrator for Stochastic Nonlinear Schrödinger Equation

Published online by Cambridge University Press:  03 June 2015

Shanshan Jiang*
Affiliation:
College of Science, Beijing University of Chemical Technology, Beijing 100029, P.R. China
Lijin Wang*
Affiliation:
School of Mathematical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
Jialin Hong*
Affiliation:
State Key Laboratory of Scientific and Engineering Computing, Institute of ComputationalMathematics and Scientific/Engineering Computing, Academy of Mathematics and System Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, P.R. China
*
Get access

Abstract

In this paper we propose stochastic multi-symplectic conservation law for stochastic Hamiltonian partial differential equations, and develop a stochastic multi-symplectic method for numerically solving a kind of stochastic nonlinear Schrödinger equations. It is shown that the stochastic multi-symplectic method preserves the multi-symplectic structure, the discrete charge conservation law, and deduces the recurrence relation of the discrete energy. Numerical experiments are performed to verify the good behaviors of the stochastic multi-symplectic method in cases of both solitary wave and collision.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bang, O., Christiansen, P.L., ø, K.Rasmussen, White noise in the two-dimensional nonlinear Schrödinger equation, Appl. Math., 57 (1995), 315.Google Scholar
[2]Bouard, A.De, Debussche, A., Di Menza, L., Theoretical and numerical aspects of stochastic nonlinear Schrödinger equations, Monte-Carlo Meth. Appl., 7(1-2)(2001), 5563.CrossRefGoogle Scholar
[3]Debussche, A., Di Menza, L., Numerical simulation of focusing stochastic nonlinear Schrödinger equations, Phys. D,162(2002), 131154.CrossRefGoogle Scholar
[4]De Bouard, A., Debussche, A., Weak and strong order of convergence of a semi discrete scheme for the stochastic Nonlinear Schrodinger equation, Appl. Mathe. Optim., 54 (2006), 369399.CrossRefGoogle Scholar
[5]Abdullaev, F.Kh., Garuier, J., Soliton in media with random dispersive perturbations, Physica. D, 134 (1999), 303315.CrossRefGoogle Scholar
[6]Bridges, T., Reich, S., Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), 184193.CrossRefGoogle Scholar
[7]Hairer, E., Lubich, C., Wanner, G., Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer-Verlag, 2002.Google Scholar
[8]Hong, J., Liu, Y., H Munthe-Kaas and A Zanna, Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients, Appl. Numer. Math., 56 (2006), 814843.CrossRefGoogle Scholar
[9]Hong, J., Liu, X., Li, C., Multi-symplectic Runge-Kutta methods for nonlinear Schrödinger equations with variable coefficients, J. Comput. Phys., 226 (2007), 19681984.CrossRefGoogle Scholar
[10]Hong, J., Scherer, R., Wang, L., Midpoint Rule for a Linear Stochastic Oscillator with Additive Noise, Neural Parallel and Scientific Computing, 14 (2006), 112.Google Scholar
[11]Iserles, A., A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, Cambridge, 1996.Google Scholar
[12]Islas, A., Karpeev, D., Schober, C., Geometric integrators for the nonlinear Schrödinger equation, J. Comput. Phys., 173 (2001), 116148.CrossRefGoogle Scholar
[13]Konotop, V., Vazquez, L., Nonlinear Random Waves, World Scientific, River Edge. NJ, 1994.CrossRefGoogle Scholar
[14]Marsden, J., Patrick, G., Shkoller, S., Multi-symplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys. 199(1998), 351395.CrossRefGoogle Scholar
[15]Milstein, G., Tretyakov, M., Stochastic Numerics for Mathematical Physics, Kluwer Academic Publishers, 1995.Google Scholar
[16]Rasmussen, k. ø., Gaididei, Y.B., Bang, O., Christiansen, P.L., The influence of noise on critical collapse in the nonlinear Schrödinger equation, Phys. Rev. A, 204 (1995), 121127.Google Scholar
[17]Schober, C., Symplectic integrators for the Ablowitz-Ladik discrete nonlinear Schrödinger equation, Phys. Lett. A, 259 (1999), 140151.CrossRefGoogle Scholar
[18]Shardlow, T., Weak convergence of a numerical method for a stochastic heat equation, BIT, 43 (2003), 179193.CrossRefGoogle Scholar
19
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Stochastic Multi-Symplectic Integrator for Stochastic Nonlinear Schrödinger Equation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Stochastic Multi-Symplectic Integrator for Stochastic Nonlinear Schrödinger Equation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Stochastic Multi-Symplectic Integrator for Stochastic Nonlinear Schrödinger Equation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *