Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-wh2kg Total loading time: 0.863 Render date: 2022-06-25T11:57:25.556Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Scaling Regimes and the Singularity of Specific Heat in the 3D Ising Model

Published online by Cambridge University Press:  03 June 2015

J. Kaupužs*
Affiliation:
Institute of Mathematics and Computer Science, University of Latvia, 29 Raiņa Boulevard, LV1459, Riga, Latvia Institute of Mathematical Sciences and Information Technologies, University of Liepaja, 14 Liela Street, Liepaja LV-3401, Latvia
R. V. N. Melnik*
Affiliation:
Wilfrid Laurier University, Waterloo, Ontario, Canada, N2L 3C5
J. Rimšāns*
Affiliation:
Institute of Mathematics and Computer Science, University of Latvia, 29 Raiņa Boulevard, LV1459, Riga, Latvia Institute of Mathematical Sciences and Information Technologies, University of Liepaja, 14 Liela Street, Liepaja LV-3401, Latvia
*
Corresponding author.Email:kaupuzs@latnet.lv
Get access

Abstract

The singularity of specific heat CV of the three-dimensional Ising model is studied based on Monte Carlo data for lattice sizes L≤1536. Fits of two data sets, one corresponding to certain value of the Binder cumulant and the other — to the maximum of CV, provide consistent values of C0 in the ansatz CV(L)=C0+ALα/ν at large L, if α/ν=0.196(6). However, a direct estimation from our data suggests that α/ν, most probably, has a smaller value (e.g., α/ν= 0.113(30)). Thus, the conventional power-law scaling ansatz can be questioned because of this inconsistency. We have found that the data are well described by certain logarithmic ansatz.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Hasenbusch, M., Int. J. Mod. Phys. C 12 (2001) 911.CrossRefGoogle Scholar
[2]Deng, Y., Bloöte, H. W. J., Phys. Rev. E 68 (2003) 036125.CrossRefGoogle Scholar
[3]Chen, J.-H., Fisher, M. E., Phys. Rev. Lett. 48 (1982) 630.CrossRefGoogle Scholar
[4]Bloöte, H. W. J., Luijten, E., Heringa, J. R., J. Phys. A: Math. Gen. 28 (1995) 6289.CrossRefGoogle Scholar
[5]Feng, X., Bloöte, H. W. J., Phys. Rev. E 81 (2010) 031103.CrossRefGoogle Scholar
[6]Hasenbusch, M., Phys. Rev. B 82 (2010) 174433.CrossRefGoogle Scholar
[7]Hasenbusch, M., Phys. Rev. B 82 (2010) 174434.CrossRefGoogle Scholar
[8]Kaupuzˇs, J., Rimsøāns, J., Melnik, R. V. N., Ukr. J. Phys. 56 (2011) 845.Google Scholar
[9]Stauffer, D., Braz. J. Phys. 30 (2000) 787.CrossRefGoogle Scholar
[10]Kaupuzˇs, J., Ann. Phys. (Berlin) 10 (2001) 299.3.0.CO;2-J>CrossRefGoogle Scholar
[11]Kaupuzˇs, J., Progress of Theoretical Physics 124 (2010) 613.CrossRefGoogle Scholar
[12]Zhang, Z-D., Philosophical Magazine 87 (2007) 5309.CrossRefGoogle Scholar
[13]Guida, R., Zinn-Justin, J., J. Phys. A 31 (1998) 8103.CrossRefGoogle Scholar
[14]Wolff, U., Phys. Rev. Lett. 62 (1989) 361.CrossRefGoogle Scholar
[15]Kaupuzˇs, J., Rimsøāns, J., Melnik, R. V. N., Phys. Rev. E 81 (2010) 026701.CrossRefGoogle Scholar
[16]Amit, D. J., Field Theory, the Renormalization Group, and Critical Phenomena, World Scientific, Singapore, 1984.Google Scholar
[17]Ma, S.-K., Modern Theory of Critical Phenomena, W. A. Benjamin, Inc., New York, 1976.Google Scholar
[18]Zinn-Justin, J., Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford, 1996.Google Scholar
[19]Kleinert, H., Schulte-Frohlinde, V., Critical Properties of ø 4 Theories, World Scientific, Singapore, 2001.CrossRefGoogle Scholar
[20]Pelissetto, A., Vicari, E., Phys. Rep. 368 (2002) 549.CrossRefGoogle Scholar
[21]Newman, K. E., Riedel, E. K., Phys. Rev. B 30 (1984) 6615.CrossRefGoogle Scholar
[22]Tseskis, A. L., Exp, J.Theor. Phys. 75 (1992) 269.Google Scholar
[23]Janke, W., Kenna, R., Nucl. Phys. Proc. Suppl. 106 (2002) 929.CrossRefGoogle Scholar
[24]Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., Numerical Recipes - The Art of Scientific Computing, Cambridge University Press, Cambridge, 1989.Google Scholar
[25]Campostrini, M., Pelissetto, A., Rossi, P., Vicari, E., Phys. Rev. E 65 (2002) 066127.CrossRefGoogle Scholar
[26]Butera, P., Comi, M., Phys. Rev. B 65 (2002) 144431.CrossRefGoogle Scholar
[27]Butera, P., Comi, M., Phys. Rev. B 72 (2005) 014442.CrossRefGoogle Scholar
[28]Collura, M., J. Stat. Mech. (2010) P12036.CrossRefGoogle Scholar
[29]Kaupuzˇs, J., Can. J. Phys. 90 (2012) 373.CrossRefGoogle Scholar
[30]Haäggkvist, R., Rosengren, A., Lundow, P. H., Markstroäm, K., Andreén, D., Kundrotas, P., Advances in Physics 56 (2007) 653.CrossRefGoogle Scholar
[31]Lundow, P. H., Markstroäm, K., Rosengren, A., Philosophical Magazine 89 (2009) 2009.CrossRefGoogle Scholar
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Scaling Regimes and the Singularity of Specific Heat in the 3D Ising Model
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Scaling Regimes and the Singularity of Specific Heat in the 3D Ising Model
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Scaling Regimes and the Singularity of Specific Heat in the 3D Ising Model
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *