Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-jsbx8 Total loading time: 0.194 Render date: 2021-04-19T22:32:55.425Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A New Coupled Complex Boundary Method for Bioluminescence Tomography

Published online by Cambridge University Press:  15 January 2016

Rongfang Gong
Affiliation:
Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Xiaoliang Cheng
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou 310027, China
Weimin Han
Affiliation:
Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
Get access

Abstract

In this paper, we introduce and study a new method for solving inverse source problems, through a working model that arises in bioluminescence tomography (BLT). In the BLT problem, one constructs quantitatively the bioluminescence source distribution inside a small animal from optical signals detected on the animal's body surface. The BLT problem possesses strong ill-posedness and often the Tikhonov regularization is used to obtain stable approximate solutions. In conventional Tikhonov regularization, it is crucial to choose a proper regularization parameter for trade off between the accuracy and stability of approximate solutions. The new method is based on a combination of the boundary condition and the boundary measurement in a parameter-dependent single complex Robin boundary condition, followed by the Tikhonov regularization. By properly adjusting the parameter in the Robin boundary condition, we achieve two important properties for our new method: first, the regularized solutions are uniformly stable with respect to the regularization parameter so that the regularization parameter can be chosen based solely on the consideration of the solution accuracy; second, the convergence order of the regularized solutions reaches one with respect to the noise level. Then, the finite element method is used to compute numerical solutions and a new finite element error estimate is derived for discrete solutions. These results improve related results found in the existing literature. Several numerical examples are provided to illustrate the theoretical results.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Atkinson, K. and Han, W., Theoretical Numerical Analysis: A Functional Analysis Framework, Third edition, Springer-Verlag, New York, 2009.Google Scholar
[2]Brenner, S. C. and Scott, L. R., The Mathematical Theory of Finite Element Methods, Third edition, Springer-Verlag, New York, 2008.CrossRefGoogle Scholar
[3]Cheng, X. L., Gong, R. F. and Han, W., A new general mathematical framework for bioluminescence tomography, Comput. Methods Appl. Mech. Engrg., 197 (2008), 524535.CrossRefGoogle Scholar
[4]Cheng, X. L., Gong, R. F., Han, W. and Zheng, X., A novel coupled complex boundary method for solving inverse source problems, Inverse Probl., 30 (2014), 055002 20pp.CrossRefGoogle Scholar
[5]Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.Google Scholar
[6]Cong, W. X., Wang, G., Kumar, D.et al., Practical reconstrucion method for bioluminescence tomography, Opt. Express, 18 (2005), 67566771.CrossRefGoogle Scholar
[7]Dautray, R. and Lions, J. L., Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2, Springer, Berlin, 1988.CrossRefGoogle Scholar
[8]Feng, J., Qin, C., Zhu, S.et al., Total variation regularization for bioluminescence tomography with the split Bregman method, Appl. Opt., 51 (2012), 45014512.CrossRefGoogle ScholarPubMed
[9]Gong, R. F., Cheng, X. L. and Han, W., Theorectical analysis and numerical realization of bioluminesecne tomography, J. Concrete Appl. Math., 8 (2010), 504527.Google Scholar
[10]Gong, R. F., Cheng, X. L. and Han, W., A fast solver for an inverse problem arising in bioluminesecne tomography, J. Comp. Appl. Math., 267 (2014) 228243.CrossRefGoogle Scholar
[11]Guo, W., Jia, K., Han, D.et al., Efficient sparse reconstruction algorithm for bioluminescence tomography based on duality and variable splitting, Appl. Opt., 51 (2002), 56765685.CrossRefGoogle Scholar
[12]Han, W., Cong, W. X. and Wang, G., Mathematical theory and numerical analysis of bioluminescence tomography, Inverse Probl., 22 (2006), 16591675.CrossRefGoogle Scholar
[13]He, X. W., Hou, Y. B., Chen, D. F.et al., Sparse regularization-based reconstruction for bioluminescence tomography using a multilevel adaptive finite element method, Int. J. Biomed. Imag. 2011 (2011), 20353711 pages.CrossRefGoogle ScholarPubMed
[14]Isakov, V., Inverse Source Problems, American Mathematical Society, New York, 1990.CrossRefGoogle Scholar
[15]Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems, Springer, New York, 1996.CrossRefGoogle Scholar
[16]Kreutzmann, T., Geometric Regularization in Bioluminescence Tomography, KIT Scientific Publishing, 2014.Google Scholar
[17]Liu, K., Tian, J., Lu, Y.et al., A fast bioluminescent source localization method based on generalized graph cuts with mouse model validations, Opt. Express, 18 (2010), 37323745.CrossRefGoogle ScholarPubMed
[18]Lv, Y., Tian, J., Cong, W.et al., A multilevel adaptive finite element algorithm for bioluminescence tomography, Opt. Express, 14 (2006), 82118223CrossRefGoogle ScholarPubMed
[19]Wang, G., Li, Y. and Jiang, M., Uniqueness theorems in bioluminescence tomography, Med. Phys., 31 (2004), 22892299.CrossRefGoogle ScholarPubMed
[20]Wang, T., Gao, S., Zhang, L.et al., Overlap domain decomposition method for bioluminescence tomography (BLT), Commun. Numer. Meth. Engng., 26 (2010), 511523.Google Scholar
[21]Weissleder, R. and Ntziachristos, V., Shedding light onto live molecular targets, Nat. Med., 9 (2003), 123128.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 46 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A New Coupled Complex Boundary Method for Bioluminescence Tomography
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A New Coupled Complex Boundary Method for Bioluminescence Tomography
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A New Coupled Complex Boundary Method for Bioluminescence Tomography
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *