Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-8sgpw Total loading time: 0.269 Render date: 2021-03-05T20:48:16.081Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Effect of Oscillation Structures on Inertial-Range Intermittence and Topology in Turbulent Field

Published online by Cambridge University Press:  15 January 2016

Kun Yang
Affiliation:
State Key Laboratory of Turbulence and Complex Systems, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, P.R. China
Zhenhua Xia
Affiliation:
State Key Laboratory of Turbulence and Complex Systems, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, P.R. China
Yipeng Shi
Affiliation:
State Key Laboratory of Turbulence and Complex Systems, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, P.R. China
Shiyi Chen
Affiliation:
State Key Laboratory of Turbulence and Complex Systems, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, P.R. China Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191, P.R. China
Get access

Abstract

Using the incompressible isotropic turbulent fields obtained from direct numerical simulation and large-eddy simulation, we studied the statistics of oscillation structures based on local zero-crossings and their relation with inertial-range intermittency for transverse velocity and passive scalar. Our results show that for both the velocity and passive scalar, the local oscillation structures are statistically scale-invariant at high Reynolds number, and the inertial-range intermittency of the overall flow region is determined by the most intermittent structures characterized by one local zero-crossing. Local flow patterns conditioned on the oscillation structures are characterized by the joint probability density function of the invariants of the filtered velocity gradient tensor at inertial range. We demonstrate that the most intermittent regions for longitudinal velocity tend to lay at the saddle area, while those for the transverse velocity tend to locate at the vortex-dominated area. The connection between the ramp-cliff structures in passive scalar field and the corresponding saddle regions in the velocity field is also verified by the approach of oscillation structure classification.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Kolmogorov, A. N., Dissipation of energy in the locally isotropic turbulence, C. R. Acad. Sci. URSS, 32 (1941), 16.Google Scholar
[2]Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, C. R. Acad. Sci. URSS, 30 (1941), 301305.Google Scholar
[3]Frisch, U., Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, 1995.CrossRefGoogle Scholar
[4]Grossmann, S., Lohse, D. and Reeh, A., Different intermittency for longitudinal and transversal turbulent fluctuations, Phys. Fluids, 9 (1997), 38173825.CrossRefGoogle Scholar
[5]Sreenivasan, K. R. and Antonia, R. A., The phenomenology of small scale turbulence, Annu. Rev. Fluid Mech., 29 (1997), 435472.CrossRefGoogle Scholar
[6]Dhruva, B., Tsuji, Y. and Sreenivasan, K. R., Transverse structure functions in high-Reynolds-number turbulence, Phys. Rev. E, 56 (1997), R4928.CrossRefGoogle Scholar
[7]Gotoh, T., Fukayama, D. and Nakano, T., Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation, Phys. Fluids, 14 (2002), 10651081.CrossRefGoogle Scholar
[8]Ishihara, T., Gotoh, T. and Kaneda, Y., Study of high Reynolds number isotropic turbulence by direct numerical simulation, Annu. Rev. Fluid Mech., 41 (2009), 165180.CrossRefGoogle Scholar
[9]Benzi, R., Biferale, L., Fisher, R., Lamb, D. Q. and Toschi, F., Inertial range Eulerian and La-grangian statistics from numerical simulations of isotropic turbulence, J. Fluid Mech., 653 (2010), 221244.CrossRefGoogle Scholar
[10]Grauer, R., Homann, H. and Pinton, J.-F, Longitudinal and transverse structure functions in high-Reynolds-number turbulence, New J. Phys., 14 (2012), 063016.CrossRefGoogle Scholar
[11]Warhaft, Z., Passive scalars in turbulent flows, Annu. Rev. Fluid Mech., 32 (2000), 203240.CrossRefGoogle Scholar
[12]Gotoh, T. and Yeung, P. K., Passive scalar transport in turbulence: a computational perspective, in Ten chapters in turbulence, Cambridge University Press, 2012.Google Scholar
[13]Obukhov, A. M., Structures of the temperature field in a turbulent flow, IZv. Akad. Nauk SSSR. Ser. Geogr. Geofiz., 13 (1949), 5869.Google Scholar
[14]Corrsin, S., On the spectrum of isotropic temperature fluctuations in an isotropic turbulence, J. Appl. Phys., 22 (1951), 469473.CrossRefGoogle Scholar
[15]Kolmogorov, A. N., A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 13 (1962), 8285.CrossRefGoogle Scholar
[16]Oboukhov, A. M., Some specific features of atmospheric tubulence, J. Fluid Mech., 13 (1962), 7781.CrossRefGoogle Scholar
[17]Meneveau, C. and Sreenivasan, K. R., Simple multifractal cascade model for fully developed turbulence, Phys. Rev. Lett., 59 (1987), 14241427.CrossRefGoogle ScholarPubMed
[18]She, Z.-S. and Leveque, E., Universal scaling laws in fully developed turbulences, Phys. Rev. Lett., 72 (1994), 336339.CrossRefGoogle Scholar
[19]Chen, S., Sreenivasan, K. R., Nelkin, M. and Cao, N., Refined similarity hypothesis for transverse structure functions in fluid turbulence, Phys. Rev. Lett., 79 (1997), 22532256.CrossRefGoogle Scholar
[20]Atta, C. W. V., Influence of fluctuations in local dissipation rates on turbulent scalar characteristics in the inertial subrange, Phys. Fluids, 14 (1971), 18031804.CrossRefGoogle Scholar
[21]Zhu, Y., Antonia, R. A., and Hosokawa, I., Refined similarity hypothesis for turbulent velocity and temperature fields, Phys. Fluids, 7 (1995), 16371648.CrossRefGoogle Scholar
[22]Stolovitzky, G., Kailasnath, P., and Sreenivasan, K. R., Refined similarity hypotheses for passive scalars mixed by turbulence, J. Fluid Mech., 297 (1995), 275291.CrossRefGoogle Scholar
[23]Prasad, R. R., Meneveau, C., and Sreenivasan, K. R., Multifractal nature of the dissipation field of passive scalars in fully turbulent flows, Phys. Rev. Lett., 61 (1988), 7477.CrossRefGoogle ScholarPubMed
[24]Cao, N. and Chen, S., An intermittency model for passive-scalar turbulence, Phys. Fluids., 9 (1997), 12031205.CrossRefGoogle Scholar
[25]Kraichnan, R. H., On Kolmogorov's inertial range theories, J. Fluid Mech., 62 (1974), 305330.CrossRefGoogle Scholar
[26]She, Z.-S., Jackson, E. and Orszag, S. A., Intermittent vortex structures in homogeneous isotropic turbulence, Nature, 344 (1990), 226228.CrossRefGoogle Scholar
[27]A. Sain, Manu and Pandit, R., Turbulence and multiscaling in the randomly forced Navier-Stokes equation, Phys. Rev. Lett., 81 (1998), 43774380CrossRefGoogle Scholar
[28]Biferale, L. and Procaccia, I., Anisotropy in turbulent flows and in turbulent transport, Phys. Rep., 414 (2005), 43164.CrossRefGoogle Scholar
[29]Camussi, R., Barbagallo, D., Guj, G. and Stella, F., Transverse and longitudinal scaling laws in non-homogeneous low Re turbulence, Phys. Fluids, 8 (1996), 11811191.CrossRefGoogle Scholar
[30]Noullez, A., Wallace, G., Lempert, W., Miles, R. B. and Frisch, U., Transverse velocity increments in turbulent flow using the RELIEF technique, J. Fluid Mech., 339 (1997), 287307.CrossRefGoogle Scholar
[31]van de Water, W. and Herweijer, J. A., High-order structure functions of turbulence, J. Fluid Mech., 387 (1999), 337.CrossRefGoogle Scholar
[32]Shen, X. and Warhaft, Z., Longitudinal and transverse structure functions in sheared and unsheared wind-tunnel turbulence, Phys. Fluids, 14 (2002), 370381.CrossRefGoogle Scholar
[33]Boratav, O. N. and Pelz, R. B., Structures and structure functions in the inertial range of turbulence, Phys. Fluids, 9 (1997), 14001415.CrossRefGoogle Scholar
[34]Zhou, T. and Antonia, R. A., Reynolds number dependence of the small-scale structure of grid turbulence, J. Fluid Mech., 406 (2000), 81107.CrossRefGoogle Scholar
[35]Arad, I., Dhruva, B., Kurien, S., Lvov, V. S., I. Procaccia and K. R. Sreenivasan, Extraction of anisotropic contributions in turbulent flows, Phys. Rev. Lett., 81 (1998), 53305333.CrossRefGoogle Scholar
[36]Romano, G. P. and Antonia, R. A., Longitudinal and transverse structure functions in a turbulent round jet: effect of initial conditions and Reynolds number, J. Fluid Mech., 436 (2001), 231248.CrossRefGoogle Scholar
[37]Zhou, T., Hao, Z., Chua, L. P. and Yu, S. C. M., Scaling of longitudinal and transverse velocity increments in a cylinder wake, Phys. Rev. E, 71 (2005), 066307.CrossRefGoogle Scholar
[38]Pumir, A., A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient, Phys. Fluids, 6 (1994), 21182132.CrossRefGoogle Scholar
[39]Holzer, M. and Siggia, E. D., Turbulent mixing of a passive scalar, Phys. Fluids, 6 (1994), 18201837.CrossRefGoogle Scholar
[40]Yang, K., Shi, Y., Sreenivasan, K. R. and Chen, S., Inertial-range oscillation structures and anomalous scaling of fluid turbulence, (2015), to appear.Google Scholar
[41]Chong, M. S., Perry, A. E. and Cantwell, B. J., A general classification of three-dimensional flow fields, Phys. Fluids A, 2 (1990), 765777.CrossRefGoogle Scholar
[42]Mandelbrot, B. B. and Ness, J. W. V., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422437.CrossRefGoogle Scholar
[43]Vreman, B., Geurts, B., and Kuerten, H., Large-eddy simulation of the turbulent mixing layer using the Clark model, Theor. Comput. Fluid Dyn., 8 (1996), 309324.CrossRefGoogle Scholar
[44]Vreman, B., Geurts, B., and Kuerten, H., Large-eddy simulation of the turbulent mixing layer, J. Fluid. Mech., 339 (1997), 357390.CrossRefGoogle Scholar
[45]Abry, P. and Sellan, F., The wavelet-based synthesis for the fractional Brownian motion proposed by F. Sellan and Y. Meyer: remarks and fast implementation, Appl. Comp. Harmonic Anal., 3 (1996), 377383.CrossRefGoogle Scholar
[46]Narayanan, M. A. B., Universal trends observed in the maxima of the longitudinal velocity fluctuations and the zero crossings turbulent flows, AIAA J., 17 (1979), 527529.CrossRefGoogle Scholar
[47]Sreenivasan, K. R., Prabhu, A. and Narasimha, R., Zero-crossings in turbulent signals,, J. Fluid Mech., 137 (1983), 251272.CrossRefGoogle Scholar
[48]Kailasnath, P. and Sreenivasan, K. R., Zero crossings of velocity fluctuations in turbulent boundary layers, Phys. Fluids A, 5 (1993), 28792885.CrossRefGoogle Scholar
[49]Sreenivasan, K. R. and Bershadskii, A., Clustering properties in turbulent signals, J. Stat Phys., 125 (2006), 11451157.CrossRefGoogle Scholar
[50]Poggi, D. and Katul, G., Flume experiments on intermittency and zero-crossing properties of canopy turbulence, Phys. Fluids, 21 (2009), 65103.CrossRefGoogle Scholar
[51]Cava, D., Katul, G. G., Molini, A. and Elefante, C., The role of surface characteristics on intermittency and zero-crossing properties of atmospheric turbulence, J. Geophys. Res., 117 (2012), D01104.CrossRefGoogle Scholar
[52]Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. and Succi, S., Extended self-similarity in turbulent flows, Phys. Rev. E, 48 (1993), R29.CrossRefGoogle ScholarPubMed
[53]Martin, J., Ooi, A., Chong, M. S. and Soria, J., Dynamics of the velocity gradient tensor invariants in isotropic turbulence, Phys. Fluids, 10 (1998), 23362346.CrossRefGoogle Scholar
[54]Meneveau, C., Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows, Annu. Rev. Fluid Mech., 43 (2011), 219245.CrossRefGoogle Scholar
[55]Antonia, R. A., Chambers, A. J., Britz, D. and Browne, L. W. B., Organized structures in a turbulent plane jet: topology and contribution to momentum and heat transport, J. Fluid Mech., 172 (1986), 211229.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 71 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Oscillation Structures on Inertial-Range Intermittence and Topology in Turbulent Field
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of Oscillation Structures on Inertial-Range Intermittence and Topology in Turbulent Field
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of Oscillation Structures on Inertial-Range Intermittence and Topology in Turbulent Field
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *