Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-dpvgk Total loading time: 0.3 Render date: 2022-06-27T22:00:42.789Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

A Contact SPH Method with High-Order Limiters for Simulation of Inviscid Compressible Flows

Published online by Cambridge University Press:  03 June 2015

Xueying Zhang*
Affiliation:
College of Science, Hohai University, Nanjing, Jiangsu 210098, P.R. China
Haiyan Tian*
Affiliation:
Department of Mathematics, University of Southern Mississippi, Hattiesburg, MS 39406, USA
Leihsin Kuo*
Affiliation:
Department of Mathematics, University of Southern Mississippi, Hattiesburg, MS 39406, USA
Wen Chen*
Affiliation:
Department of Engineering Mechanics, Hohai University, Nanjing, Jiangsu 210098, P.R. China
Get access

Abstract

In this paper, we study a class of contact smoothed particle hydrodynamics (SPH) by introducing Riemann solvers and using high-order limiters. In particular, a promising concept of WENO interpolation as limiter is presented in the reconstruction process. The physical values relating interactional particles used as the initial values of the Riemann problem can be reconstructed by the Taylor series expansion. The contact solvers of the Riemann problem at contact points are incorporated in SPH approximations. In order to keep the fluid density at the wall rows to be consistent with that of the inner fluid wall boundaries, several lines of dummy particles are placed outside of the solid walls, which are assigned according to the initial configuration. At last, the method is applied to compressible flows with sharp discontinuities such as the collision of two strong shocks and the interaction of two blast waves and so on. The numerical results indicate that the method is capable of handling sharp discontinuity and efficiently reducing unphysical oscillations.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Wiezckowski, Z., The material point method in large strain engineering problems, Comput. Methods Appl. Mech. Engrg., 193 (2004), 44174438.CrossRefGoogle Scholar
[2]Liu, W. K., Jun, S., Li, S.et al., Reproducing kernel particle methods for structural dynamics. Int. Numer. Methods Eng., 38 (1995), 16551679.CrossRefGoogle Scholar
[3]Monaghan, J. J., On the problem of penetration in particle methods, J. Comput. Phys., 82 (1989), 115.CrossRefGoogle Scholar
[4]Shu, C., Ding, H., Chen, H. Q., Wang, T. G., An upwind local RBF-DQ method for simulation of inviscid compressible flows, Comput. Methods Appl. Mech. Eng., 194 (2005), 20012017.CrossRefGoogle Scholar
[5]Chen, C. S., Lee, S., Huang, C. S., The method of particular solutions using Chebyshev polynomial based function, International Journal of Computational Methods, 4 (2007), 1532.CrossRefGoogle Scholar
[6]Campbell, J., Vignjevic, R., Libersky, L., A contact algorithm for smoothed particle hydrodynamics, Comput. Methods Appl. Mech. Eng., 184 (2000), 4965.CrossRefGoogle Scholar
[7]Monaghan, J. J., Simulating free surfaceflows with SPH, J. Comput. Phys., 110 (1994),399406.CrossRefGoogle Scholar
[8]Monaghan, J. J., SPH and Riemann solvers, J. Comput. Phys., 136 (1997), 298307.CrossRefGoogle Scholar
[9]Inutsuka, S., Reformulation of smoothed particle hydrodynamics with Riemann solver, J. Comput. Phys., 179 (2002), 238267.CrossRefGoogle Scholar
[10]Parshikov, A. N., Medin, S. A., Loukashenko, I. I.et al., Improvements in SPH method by means of interparticle contact algorithm and analysis of perforation tests at moderate projectile velocities, International Journal of Impact Engineering, 24 (2000), 779796.CrossRefGoogle Scholar
[11]Parshikov, A. N., Medin, S. A., Smoothed particle hydrodynamics using interparticle contact algorithms, J. Comput. Phys., 180 (2002), 358382.CrossRefGoogle Scholar
[12]Cha, S. H., Whitworth, A. P., Implementation and tests of Godunov-type particle hydrodynamics, Mon. Not. Royal Astron. Soc., 340 (2003), 7390.CrossRefGoogle Scholar
[13]Ferrari, A., Dumbser, M., Toro, E. F., Armanini, A., A new stable and consistent version of the SPH method in Lagrangian coordinates, SPHERIC-Smoothed Particle Hydrodynamics European Research Interest Community, 2nd International Workshop, Universidad Politécnica de Madrid, Madrid, 2318 May, 2007.Google Scholar
[14]Sigalotti, L. D., Loópez, H., Donoso, A., A shock-capturing SPH scheme based on adaptive kernel estimation, J. Comput. Phys., 212 (2006), 124149.CrossRefGoogle Scholar
[15]Sigalotti, L. D., Loãpez, H., Trujillo, L., An adaptive SPH method for strong shocks, J. Comput. Phys., 228 (2009), 58885907.CrossRefGoogle Scholar
[16]Morris, J. P., Fox, P. J., Zhu, Y., Modeling low Reynolds number incompressible flows using SPH, J. Comput. Phys., 136 (1997), 214226.CrossRefGoogle Scholar
[17]Monaghan, J. J., Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30 (1992), 543574.CrossRefGoogle Scholar
[18]Colagrossi, A., Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., 191 (2003), 448475.CrossRefGoogle Scholar
[19]Dalrymple, R. A., Rogers, B. D., Numerical modeling of water waves with the SPH method, Coast. Eng., 53 (2006), 141147.CrossRefGoogle Scholar
[20]Shu, C. W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in: Cockburn, B., Johnson, C., Shu, C. W., Tadmor, E., Quarteroni, A. (Eds.), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, Vol. 1697, Springer, New York, 1998, 325432.CrossRefGoogle Scholar
[21]Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Third Edition, Springer, 2009.CrossRefGoogle Scholar
[22]Liu, G. R., Liu, M. B., Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific, 2003.CrossRefGoogle Scholar
4
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Contact SPH Method with High-Order Limiters for Simulation of Inviscid Compressible Flows
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A Contact SPH Method with High-Order Limiters for Simulation of Inviscid Compressible Flows
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A Contact SPH Method with High-Order Limiters for Simulation of Inviscid Compressible Flows
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *