Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-mm7gn Total loading time: 0.401 Render date: 2022-08-14T01:36:07.773Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Analytic Structure of the SCFT Energy Functional of Multicomponent Block Copolymers

Published online by Cambridge University Press:  03 June 2015

Kai Jiang
Affiliation:
Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University, Hunan 411105, P.R. China LMAM, CAPT and School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
Weiquan Xu
Affiliation:
LMAM, CAPT and School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
Pingwen Zhang*
Affiliation:
LMAM, CAPT and School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
*
*Corresponding author. Email addresses: kaijiang@xtu.edu.cn (K. Jiang), weiquanxu1986@gmail.com (W. Xu), pzhang@pku.edu.cn (P. Zhang)
Get access

Abstract

This paper concerns the analytic structure of the self-consistent field theory (SCFT) energy functional of multicomponent block copolymer systems which contain more than two chemically distinct blocks. The SCFT has enjoyed considered success and wide usage in investigation of the complex phase behavior of block copolymers. It is well-known that the physical solutions of the SCFT equations are saddle points, however, the analytic structure of the SCFT energy functional has received little attention over the years. A recent work by Fredrickson and collaborators [see the monograph by Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers, (2006), pp. 203–209] has analysed the mathematical structure of the field energy functional for polymeric systems, and clarified the index-1 saddle point nature of the problem caused by the incompressible constraint. In this paper, our goals are to draw further attention to multicomponent block copolymers utilizing the Hubbard-Stratonovich transformation used by Fredrickson and co-workers. We firstly show that the saddle point character of the SCFT energy functional of multicomponent block copolymer systems may be high index, not only produced by the incompressible constraint, but also by the Flory-Huggins interaction parameters. Our analysis will be beneficial to many theoretical studies, such as the nucleation theory of ordered phases, the mesoscopic dynamics. As an application, we utilize the discovery to develop the gradient-based iterative schemes to solve the SCFT equations, and illustrate its performance through several numerical experiments taking ABC star triblock copolymers as an example.

Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Hamley, I. W. and Wiley, J., Developments in block copolymer science and technology, Wiley Online Library, 2004.CrossRefGoogle Scholar
[2]Matsen, M. W., The standard Gaussian model for block copolymer melts, Journal of Physics: Condensed Matter, 14:R21R47, 2002.Google Scholar
[3]Fredrickson, G. H., The equilibrium theory of inhomogeneous polymers, Oxford University Press, USA, 2006.Google Scholar
[4]Jiang, K.Huang, Y., and Zhang, P., Spectral method for exploring patterns of diblock copolymers, Journal of Computational Physics, 229:77967805, 2010.CrossRefGoogle Scholar
[5]Jiang, K.Wang, C.Huang, Y., and Zhang, P., Discovery of new metastable patterns in diblock copolymers, Communications in Computational Physics, 14:443460, 2013.CrossRefGoogle Scholar
[6]Xu, W.Jiang, K.Zhang, P., and Shi, A. C., A strategy to explore stable and metastable ordered phases of block copolymers, The Journal of Physical Chemistry B, 117:52965305, 2013.CrossRefGoogle ScholarPubMed
[7] J. Vavasour, D. and Whitmore, M. D., Self-consistent mean field theory of the microphases of diblock copolymers, Macromolecules, 25:54775486, 1992.CrossRefGoogle Scholar
[8]Matsen, M. and Schick, W.M., Stable and unstable phases of a diblock copolymer melt, Physical Review Letters, 72:26602663, 1994.CrossRefGoogle ScholarPubMed
[9]Drolet, F. and Fredrickson, G. H., Combinatorial screening of complex block copolymer assembly with self-consistent field theory, oPhysical Review Letters, 83:43174320, 1999.CrossRefGoogle Scholar
[10]Rasmussen, K. Ø. and Kalosakas, G., Improved numerical algorithm for exploring block copolymer mesophases, Journal of Polymer Science Part B: Polymer Physics, 40:17771783, 2002.CrossRefGoogle Scholar
[11]Guo, Z.Zhang, G.Qiu, F.Zhang, H.Yang, Y., and Shi, A. C., Discovering ordered phases of block copolymers: New results from a generic Fourier-space approach, Physical Review Letters, 101:28301, 2008.Google Scholar
[12]Cochran, E. W.Garcia-Cervera, C. J., and Fredrickson, G. H., Stability of the gyroid phase in diblock copolymers at strong segregation, Macromolecules, 39:24492451, 2006.CrossRefGoogle Scholar
[13]Ranjan, A.Qin, J., and Morse, D. C., Linear response and stability of ordered phases of block copolymer melts, Macromolecules, 41:942954, 2008.CrossRefGoogle Scholar
[14]Thompson, R. B.Rasmussen, K.Ø., and Lookman, T., Improved convergence in block copolymer self-consistent field theory by Anderson mixing, The Journal of Chemical Physics, 120:3134, 2004.CrossRefGoogle ScholarPubMed
[15]Ceniceros, H. D. and Fredrickson, G. H., Numerical solution of polymer self-consistent field theory, Multiscale Modeling and Simulation, 2:452474, 2004.CrossRefGoogle Scholar
[16]Liang, Q.Jiang, K., and Zhang, P., Efficient numerical schemes for solving self-consistent field equations of flexible-semiflexible diblock copolymers, Accepted by Mathematical Methods in the Applied Sciences, 2013.Google Scholar
[17]Ganesan, V. and Fredrickson, G. H., Field-theoretic polymer simulations, Europhysics Letters, 55:814820, 2001.CrossRefGoogle Scholar
[18]Fredrickson, G. H.Ganesan, V., and Drolet, F., Field-theoretic computer simulation methods for polymers and complex fluids, Macromolecules, 35:1639, 2002.CrossRefGoogle Scholar
[19]Chaikin, P. and Lubensky, M.T. C., Principles of condensed matter physics, Cambridge University Press, 1995.CrossRefGoogle Scholar
[20]Reister, E.Müller, M., and Binder, K., Spinodal decomposition in a binary polymer mixture: dynamic self-consistent-field theory and Monte Carlo simulations, Physical Review E, 64:041804, 2001.Google Scholar
[21]Düchs, D., Ganesan, V., Fredrickson, G.H., and Schmid, F., Fluctuation effects in ternary AB+ A+B polymeric emulsions, Macromolecules, 36:92379248, 2003.CrossRefGoogle Scholar
[22]Fraaije, J., Dynamic density functional theory for microphase separation kinetics of block copolymer melts, The Journal of Chemical Physics, 99:92029212, 1993.CrossRefGoogle Scholar
[23]Fraaije, J.Van Vlimmeren, B. A. C.Maurits, N. M.Postma, M.Evers, O. A.Hoffmann, C.Altevogt, P., and Goldbeck-Wood, G., The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts. The Journal of Chemical Physics, 106:42604269, 1997.CrossRefGoogle Scholar
[24]Cheng, X.Lin, L.ZhangW. E, P. W. E, P., and Shi, A. C., Nucleation of ordered phases in block copolymers, Physical Review Letters, 104:148301, 2010.Google Scholar
[25]Bates, F. S.Hillmyer, M. A.Lodge, T. P.Bates, C. M.Delaney, K. T., and Fredrickson, G. H., Multiblock polymers: panacea or pandora’s box? Science, 336:434440, 2012.CrossRefGoogle ScholarPubMed
[26]Masuda, J.Takano, A.Nagata, Y.Noro, A., and Matsushita, Y., Nanophase-separated synchronizing structure with parallel double periodicity from an undecablock terpolymer, Physical Review Letters, 97:98301, 2006.Google Scholar
[27]Epps, T. H. III, Cochran, E. W., Bailey, T. S., Waletzko, R. S., Hardy, C. M., and Bates, F. S., Ordered network phases in linear poly (isoprene-b-styrene-b-ethylene oxide) triblock copolymers, Macromolecules, 37:83258341, 2004.CrossRefGoogle Scholar
[28]Tang, P.Qiu, F.Zhang, H., and Yang, Y., Morphology and phase diagram of complex block copolymers: ABC star triblock copolymers, The Journal of Physical Chemistry B, 108:84348438, 2004.CrossRefGoogle Scholar
[29]Rubinstein, M. and Colby, R., Polymer physics (chemistry), Oxford University Press, USA, 2003.Google Scholar
[30]Laplace, P. S., Memoir on the probability of the causes of events, Statistical Science, 1:364378, 1986.CrossRefGoogle Scholar
[31]Miller, P. D., Applied asymptotic analysis, American Mathematical Society, 2006.CrossRefGoogle Scholar
[32]Bender, C.M. and Orszag, S. A.Advanced mathematical methods for scientists and engineers: Asymptotic methods and perturbation theory, Springer Verlag, 1999.CrossRefGoogle Scholar
[33]Ellis, R. S. and Rosen, J. S., Asymptotic analysis of gaussian integrals, I: Isolated minimum points, Transactions of the American Mathematical Society, 273:447481, 1982.CrossRefGoogle Scholar
[34]Ellis, R. S. and Rosen, J. S., Asymptotic analysis of gaussian integrals, II: Manifold of minimum points, Communications in Mathematical Physics, 82:153181, 1981.CrossRefGoogle Scholar
[35]Ellis, R. S. and Rosen, J. S., Laplace’s method for gaussian integrals with an application to statistical mechanics, The Annals of Probability, 10:4766, 1982.CrossRefGoogle Scholar
[36]Press, W. H., Numerical recipes: the art of scientific computing, Cambridge University Press, 2007.Google Scholar
[37]Frigo, M. and Johnson, S., Fftw: An adaptive software architecture for the FFT, ICASSP Conf. Proc., 3:13811384, 1998.Google Scholar
[38]Tang, P.Qiu, F.Zhang, H., and Yang, Y., Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers, Physical Review E, 69:31803, 2004.Google Scholar
[39]Tyler, C. A.Qin, J.Bates, F. S., and Morse, D. C., SCFT study of nonfrustrated ABC triblock copolymer melts, Macromolecules, 40:46544668, 2007.CrossRefGoogle Scholar
[40]Liu, M.Li, W.Qiu, F., and Shi, A. C., Theoretical study of phase behavior of frustrated ABC linear triblock copolymers, Macromolecules, 45:95229530, 2012.CrossRefGoogle Scholar
[41]Li, W. and Shi, A. C.Theory of hierarchical lamellar Structures from A(BC)nBA Multiblock Copolymers, Macromolecules, 42:811819, 2009.CrossRefGoogle Scholar
[42]Walker, H. F. and Ni, P., Anderson acceleration for fixed-point iterations, SIAM Journal on Numerical Analysis, 49:17151735, 2011.CrossRefGoogle Scholar
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Analytic Structure of the SCFT Energy Functional of Multicomponent Block Copolymers
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Analytic Structure of the SCFT Energy Functional of Multicomponent Block Copolymers
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Analytic Structure of the SCFT Energy Functional of Multicomponent Block Copolymers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *