[1]Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., and Protasi, M. (1999) Complexity and Approximation: Combinatorial Optimization Problems and their Approximability Properties, Springer.
[2]Barvinok, A. (2016) Combinatorics and Complexity of Partition Functions, Vol. 30 of Algorithms and Combinatorics, Springer.
[3]Barvinok, A. (2017) Computing the partition function of a polynomial on the Boolean cube. In A Journey Through Discrete Mathematics (Loebl, M., et al., eds), Springer, pp. 135–164.
[4]Barvinok, A. (2018) Computing permanents of complex diagonally dominant matrices and tensors. Israel J. Math., to appear. arXiv:1801.04191
[5]van den Berg, J. and Steif, J. E. (1994) Percolation and the hard-core lattice gas model. Stoch. Process. Appl. 49 179–197.
[6]Berlekamp, E. R, McEliece, R. J. and van Tilborg, H. C. A. (1978) On the inherent intractability of certain coding problems. IEEE Trans. Inform. Theory 24 384–386.
[7]Borgs, C., Chayes, J., Kahn, J., and Lovász, L. (2013) Left and right convergence of graphs with bounded degree. Random Struct. Alg. 42 1–28.
[8]Bruck, J. and M. Naor, M. (1990) The hardness of decoding linear codes with preprocessing. IEEE Trans. Inform. Theory 36 381–385.
[9]Bukh, B. (2015) Personal communication.
[10]Cai, J.-Y., Galanis, A., Goldberg, L. A., Guo, H., Jerrum, M., Štefankovič, D. and Vigoda, E. (2016) #BIS-hardness for 2-spin systems on bipartite bounded degree graphs in the tree non-uniqueness region. J. Comput. System Sci. 82 690–711.
[11]Chen, S., Delcourt, M., Moitra, A., Perarnau, G., and Postle, L. (2019) Improved bounds for randomly sampling colorings via linear programming. In Proc. Thirtieth Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, pp. 2216–2234.
[12]Csikvári, P. and Frenkel, P. E. (2016) Benjamini–Schramm continuity of root moments of graph polynomials. Europ. J. Combin. 52 (part B), 302–320.
[13]Diestel, R. (2005) Graph Theory, third edition, Vol. 173 of Graduate Texts in Mathematics, Springer.
[14]Friedli, S. and Velenik, Y. (2018) Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction, Cambridge University Press.
[15]Helmuth, T., Perkins, W., and Regts, G.(2018) Algorithmic Pirogov–Sinai theory. In Proceedings of the 51^{st} Annual ACM Symposium on the Theory of Computing (STOC 2019).
[16]Jenssen, M., Keevash, P., and Perkins, W.(2019) Algorithms for #BIS-hard problems on expander graphs. In Proc. Thirtieth Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, pp. 2235–2247.
[17]Krantz, S. G. (1992) Function Theory of Several Complex Variables, second edition, Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole.
[18]van Lint, J. H. (1999) Introduction to Coding Theory, third edition, Vol. 86 of Graduate Texts in Mathematics, Springer.
[19]Liu, J., Sinclair, A., and Srivastava, P.(2019) The Ising partition function: Zeros and deterministic approximation. J. Statist. Phys. 174, 287–315.
[20]Mézard, M. and Montanari, A. (2009) Information, Physics, and Computation, Oxford Graduate Texts, Oxford University Press.
[21]Patel, V. and Regts, G. (2017) Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials. SIAM J. Comput. 46 1893–1919.
[22]Patel, V. and Regts, G. (2017) Computing the number of induced copies of a fixed graph in a bounded degree graph. Algorithmica. doi: 10.1007/s00453-018-0511-9
[23]Valiant, L. G. (1979) The complexity of computing the permanent. Theoret. Comput. Sci. 8 189–201.
[24]Valiant, L. G. and Vazirani, V. V. (1986) NP is as easy as detecting unique solutions. Theoret. Comput. Sci. 47 85–93.
[25]Vigoda, E. (2000) Improved bounds for sampling colorings. J. Math. Phys. 41 1555–1569.