Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-01T02:01:58.495Z Has data issue: false hasContentIssue false

Precoloring Extension III: Classes of Perfect Graphs

Published online by Cambridge University Press:  12 September 2008

M. Hujter
Affiliation:
Mathematics Institute, University of Miskolc, Miskolc-Egyetemváros 3515, Hungary
Zs. Tuza
Affiliation:
Computer and Automation Institute, Hungarian Academy of Sciences, Kende u. 13–17, Budapest 1111, Hungary

Abstract

We continue the study of the following general problem on the vertex colourings of graphs. Suppose that some vertices of a graph G are assigned to some colours. Can this ‘precolouring’ be extended to a proper colouring of G with at most k colours (for some given k)? Here we investigate the complexity status of precolouring extendibility on some classes of perfect graphs, giving good characterizations (necessary and sufficient conditions) that lead to algorithms with linear or polynomial running time. It is also shown how a larger subclass of perfect graphs can be derived from graphs containing no induced path on four vertices.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bacsó, G. and Tuza, Zs. (1990) Dominating cliques in P 5free graphs. Periodica Math. Hungar. 21 303308.CrossRefGoogle Scholar
[2]Biró, M., Hujter, M. and Tuza, Zs. (1990) Precolouring extension. Preprint (Computer and Automation Institute, Budapest).Google Scholar
[3]Biró, M., Hujter, M. and Tuza, Zs. (1992) Precolouring extension. I. Interval graphs. Discrete Math. 100 267279.CrossRefGoogle Scholar
[4]Bodlaender, H. L., Jansen, K. and Woeginger, G. J. (1992) Scheduling with incompatible jobs. Preprint (Technical University, Graz).CrossRefGoogle Scholar
[5]Cook, S. A. (1971) The complexity of theorem proving procedures. Proc. 3rd Annual ACM Symposium on Theory of Computing 151158.CrossRefGoogle Scholar
[6]Corneil, D. G., Lerchs, H. and Stewart Burlingham, L. (1981) Complement reducible graphs. Discrete Appl. Math. 3 163174.CrossRefGoogle Scholar
[7]Corneil, D. G., Perl, Y. and Stewart, L. K. (1985) A linear recognition algorithm for cographs. SIAM J. Comput. 14 926934.CrossRefGoogle Scholar
[8]Földes, S., and Hammer, P. L. (1977) Split graphs. Congr. Numer. 19 311315.Google Scholar
[9]Fulkerson, D. R. (1971) Blocking and anti-blocking pairs of polyhedra. Math. Programming 1 5071.CrossRefGoogle Scholar
[10]Golumbic, M. C. (1980) Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.Google Scholar
[11]Golumbic, M. C. and Goss, C. F. (1978) Perfect elimination and chordal bipartite graphs. J. Graph Theory 2 155163.CrossRefGoogle Scholar
[12]Grötschel, M., Lovász, L. and Schrijver, A. (1981) The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1 169197.CrossRefGoogle Scholar
[13]Grötschel, M., Lovász, L. and Schrijver, A. (1984) Polynomial algorithms for perfect graphs. Ann. Discrete Math. 21 325356.Google Scholar
[14]Gyárfás, A. and Lehel, J. (1970) A Helly-type problem in trees. In: Colloq. Math. Soc. J. Bolyai, 4, Combinatorial Theory and Its Applications, Vol. 2. North-Holland, Amsterdam. 571584.Google Scholar
[15]Hammer, P. L., Maffray, F. and Preissmann, M. (1989) A characterization of chordal bipartite graphs. Rutcor Research Report #1689 (Rutgers University, New Brunswick, New Jersey).Google Scholar
[16]Hammer, P. L., Peled, U. N. and Sun, X. (1990) Difference graphs. Discrete Appl. Math. 28 3544.CrossRefGoogle Scholar
[17]Harary, F. and Tuza, Zs. (1993) Two graph-colouring games. Bull. Austral. Math. Soc. 48 151159.CrossRefGoogle Scholar
[18]Hertz, A. (1989) Slim graphs. Graphs and Combinatorics 5 149157.CrossRefGoogle Scholar
[19]Hopcroft, J. and Karp, R. M. (1973) An n5/2 algorithm for maximum matching in bipartite graphs. SIAM J. Computing 2 225231.CrossRefGoogle Scholar
[20]Hujter, M. and Tuza, Zs. (1993) Precoloring extension. II. Graph classes related to bipartite graphs. Ada Math. Univ. Comenianae 62 111.Google Scholar
[21]Hujter, M. and Tuza, Zs. (1994) Precolouring extension. IV. General bounds and list colorings. in preparation.Google Scholar
[22]Jansen, K. and Scheffler, P. (1993) Generalized coloring for tree-like graphs. Lecture Notes in Computer Science 657 5059.CrossRefGoogle Scholar
[23]König, D., (1916) Gráfok és alkalmazásuk a determinánsok és halmazok elméletében (Hungarian). [Graphs and their applications in the theories of determinants and sets] Matematikai és Természettudományi Értesítő 34 104119. [(1966) German translation: Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 453–465.]Google Scholar
[24]König, D. (1936) Theorie der Endlichen und Unendlichen Graphen (German). [Theory of finite and infinite graphs] Akademische Verlagsgeselschaft, Leipzig. [(1950) Reprinted Chelsea, New York; (1990) Translated into English by McCoart, M., Birkhäuser.]Google Scholar
[25]Kratochvíl, J. (1993) Precolouring extension with fixed color bound. Ada Math. Univ. Comenianae 62 139153.Google Scholar
[26]Kratochvíl, J., and Tuza, Zs. (1994) Algorithmic complexity of list colorings. Discrete Appl. Math. 50 297302.CrossRefGoogle Scholar
[27]Lovász, L. (1972) A characterization of perfect graphs. J. Combin. Theory B 13 9598.CrossRefGoogle Scholar
[28]Marcotte, O. and Seymour, P. D. (1990) Extending an edge-coloring. J. Graph Theory 14 565573.CrossRefGoogle Scholar
[29]Sebő, A. (1992) private communication.Google Scholar
[30]Vizing, V. G. (1965) Critical graphs with a given chromatic class (Russian). Diskret Analiz. 5 917.Google Scholar