Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-67gxp Total loading time: 0.415 Render date: 2021-03-08T01:49:49.003Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Making Kr+1-free graphs r-partite

Published online by Cambridge University Press:  10 November 2020

József Balogh
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, and Moscow Institute of Physics and Technology, Russian Federation
Felix Christian Clemen
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Mikhail Lavrov
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Bernard Lidický
Affiliation:
Department of Mathematics, Iowa State University, Ames, IA 50011, USA
Florian Pfender
Affiliation:
Department of Mathematical and Statistical Sciences, University of Colorado Denver, CO 80217-3364, USA
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

The Erdős–Simonovits stability theorem states that for all ε > 0 there exists α > 0 such that if G is a Kr+1-free graph on n vertices with e(G) > ex(n, Kr+1)– α n2, then one can remove εn2 edges from G to obtain an r-partite graph. Füredi gave a short proof that one can choose α = ε. We give a bound for the relationship of α and ε which is asymptotically sharp as ε → 0.

MSC classification

Type
Paper
Creative Commons
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Footnotes

Research is partially supported by NSF grant DMS-1764123, Arnold O. Beckman Research Award (UIUC Campus Research Board RB 18132) and the Langan Scholar Fund (UIUC).

Research of this author is partially supported by NSF grant DMS-1855653.

§

Research of this author is partially supported by NSF grant DMS-1855622.

References

Amin, K., Faudree, J., Gould, R. J. and Sidorowicz, E. (2013) On the non-(p −1)-partite Kp-free graphs. Discuss. Math.Graph Theory 33 923.CrossRefGoogle Scholar
Andrásfai, B., Erdős, P. and Sós, V. T. (1974) On the connection between chromatic number, maximal clique and minimal degree of a graph. Discrete Math. 8 205218.CrossRefGoogle Scholar
Balogh, J.,Morris, R., Samotij, W. and Warnke, L. (2016) The typical structure of sparse Kr+1-free graphs. Trans. Amer.Math. Soc. 368 64396485.Google Scholar
Brouwer, A. E. (1981) Some Lotto Numbers From an Extension of Turán’s Theorem, Vol. 152 of Afdeling Zuivere Wiskunde [Department of Pure Mathematics]. Mathematisch Centrum, Amsterdam.Google Scholar
Erdős, P. (1970) On the graph theorem of Turán. Mat. Lapok 21 249251.Google Scholar
Erdős, P., Faudree, R., Pach, J. and Spencer, J. (1988) How to make a graph bipartite. J. Combin. Theory Ser. B 45 8698.CrossRefGoogle Scholar
Erdős, P., Gyrői, E. and Simonovits, M. (1992) How many edges should be deleted to make a triangle-free graph bipartite? In Sets, Graphs and Numbers (Budapest, 1991), Vol. 60 of Colloquia Mathematica Societatis János Bolyai, pp. 239263. North-Holland.Google Scholar
Erdős, P. and Simonovits, M. (1966) A limit theorem in graph theory. Studia Sci. Math. Hungar 1 5157.Google Scholar
Füredi, Z. (2015) A proof of the stability of extremal graphs, Simonovits’ stability from Szemerédi’s regularity. J. Combin.Theory Ser. B 115 6671.CrossRefGoogle Scholar
Hanson, D. and Toft, B. (1991) k-saturated graphs of chromatic number at least k . Ars Combin. 31 159164.Google Scholar
Hu, P., Lidický, B., Martins, T., Norin, S. and Volec, J. Large multipartite subgraphs in H-free graphs. Manuscript.Google Scholar
Kang, M. and Pikhurko, O. (2005) Maximum K r+1-free graphs which are not r-partite. Mat. Stud. 24 1220.Google Scholar
Korándi, D., Roberts, A. and Scott, A. (2020) Exact stability for Turán’s theorem. arXiv:2004.10685Google Scholar
Nikiforov, V. (2011) Some new results in extremal graph theory. In Surveys in Combinatorics 2011, Vol. 392 of London Mathematical Society Lecture Note Series, pp. 141181. Cambridge University Press.Google Scholar
Roberts, A. and Scott, A. (2018) Stability results for graphs with a critical edge. arXiv:1610.08389. https://doi.org/10.1016/j.ejc.2018.07.004 CrossRefGoogle Scholar
Sudakov, B. (2007) Making a K 4-free graph bipartite. Combinatorica 27 509518.CrossRefGoogle Scholar
Turán, P. (1941) Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48 436452.Google Scholar
Tyomkyn, M. and Uzzell, A. J. (2015) Strong Turán stability. Electron. J. Combin. 22 P39.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 101 *
View data table for this chart

* Views captured on Cambridge Core between 10th November 2020 - 8th March 2021. This data will be updated every 24 hours.

Access
Open access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Making Kr+1-free graphs r-partite
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Making Kr+1-free graphs r-partite
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Making Kr+1-free graphs r-partite
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *