Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-13T15:34:39.989Z Has data issue: false hasContentIssue false

The Longest Minimum-Weight Path in a Complete Graph

Published online by Cambridge University Press:  22 June 2009

LOUIGI ADDARIO-BERRY
Affiliation:
Département de Mathématiques et de Statistique, Université de Montréal, CP 6128, Succ. Centre-ville, Montreal, Quebec, H3C 3J7, Canada (e-mail: louigi@gmail.com)
NICOLAS BROUTIN
Affiliation:
Projet Algorithms, INRIA Rocquencourt, 78153 Le Chesnay, France (e-mail: nicolas.broutin@m4x.org)
GÁBOR LUGOSI
Affiliation:
Department of Economics, Pompeu Fabra University, Ramon Trias Fargas 25-27, 08005, Barcelona, Spain (e-mail: lugosi@upf.es)

Abstract

We consider the minimum-weight path between any pair of nodes of the n-vertex complete graph in which the weights of the edges are i.i.d. exponentially distributed random variables. We show that the longest of these minimum-weight paths has about α* log n edges, where α* ≈ 3.5911 is the unique solution of the equation α log α − α = 1. This answers a question posed by Janson [8].

Type
Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alon, N. and Spencer, J. (2000) The Probabilistic Method, 2nd edn, Wiley, New York.CrossRefGoogle Scholar
[2]Dembo, A. and Zeitouni, O. (1998) Large Deviation Techniques and Applications, 2nd edn, Springer.CrossRefGoogle Scholar
[3]Devroye, L. (1987) Branching processes in the analysis of the heights of trees. Acta Informatica 24 277298.CrossRefGoogle Scholar
[4]Fortuin, C. M., Kasteleyn, P. W. and Ginibre, J. (1971) Correlational inequalities for partially ordered sets. Comm. Math. Phys. 22 89103.Google Scholar
[5]Grimmett, G. R. (1999) Percolation, Vol. 321 of A Series of Comprehensive Studies in Mathematics, 2nd edn, Springer.CrossRefGoogle Scholar
[6]Harris, T. E. (1960) A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc. 56 1320.CrossRefGoogle Scholar
[7]Hooghiemstra, G. and Van Mieghem, P. (2008) The weight and hopcount of the shortest path in the complete graph with exponential weights. Combin. Probab. Comput. 17 537548.Google Scholar
[8]Janson, S. (1999) One, two and three times log n/n for paths in a complete graph with random weights. Combin. Probab. Comput. 8 347361.Google Scholar
[9]Pittel, B. (1994) Note on the height of recursive trees and m-ary search trees. Random Struct. Alg. 5 337347.Google Scholar
[10]Robbins, H. (1955) A remark on Stirling's formula. Amer. Math. Monthly 62 2629.Google Scholar
[11]Rogers, L. C. G. and Williams, D. (2000) Diffusions, Markov Processes, and Martingales, Vol. 1, Cambridge University Press.Google Scholar
[12]Shorack, G. R. and Wellner, J. A. (1986) Empirical Processes with Applications to Statistics, Wiley.Google Scholar
[13]Smythe, R. T. and Mahmoud, H. M. (1995) A survey of recursive trees. Theoret. Probab. Math. Statist. 51 127.Google Scholar
[14]vander Hofstad, R., Hooghiemstra, G. and Van Mieghem, P. (2006) Size and weight of shortest path trees with exponential link weights. Combin. Probab. Comput. 15 903926.Google Scholar
[15]van der Hofstad, R., Hooghiemstra, G. and VanMieghem, P. Mieghem, P. (2007) The weight of the shortest path tree. Random Struct. Alg. 30 359379.Google Scholar