[1]Ajtai, M., Komlós, J. and Szemerédi, E. (1985) First occurrence of Hamilton cycles in random graphs. North-Holland Math. Studies 115 173–178.

[2]Alon, N., Krivelevich, M. and Sudakov, B. (2007) Embedding nearly-spanning bounded degree trees. Combinatorica 27 629–644.

[3]Bal, D., Bennett, P., Cooper, C., Frieze, A. and Prałat, P. (2016) Rainbow arborescence in random digraphs. J. Graph Theory 83 251–265.

[4]Balogh, J., Csaba, B. and Samotij, W. (2011) Local resilience of almost spanning trees in random graphs. Random Struct. Algorithms 38 121–139.

[5]Ben-Shimon, S., Krivelevich, M. and Sudakov, B. (2011) On the resilience of Hamiltonicity and optimal packing of Hamilton cycles in random graphs. SIAM J. Discrete Math. 25 1176–1193.

[6]Bollobás, B. (1983) Almost all regular graphs are Hamiltonian. European J. Combin. 4 97–106.

[7]Bollobás, B. (1984) The evolution of sparse graphs. In *Graph Theory and Combinatorics: Cambridge Combinatorial Conference in Honour of Paul Erdős*, pp. 335–357, Academic Press.

[8]Dirac, G. (1952) Some theorems on abstract graphs. *Proc. London Math. Soc.* 3 69–81.

[9]Erdős, P. and Rényi, A. (1959) On random graphs I. Publ. Math. Debrecen 6 290–297.

[10]Erdős, P. and Rényi, A. (1964) On random matrices. Magyar Tud. Akad. Mat. Kutató Int. Közl 8 455–461.

[11]Ferber, A., Nenadov, R., Noever, A., Peter, U. and Škorić, N. (2017) Robust Hamiltonicity of random directed graphs. J. Combin. Theory Ser. B 126 1–23.

[12]Frieze, A. (1988) An algorithm for finding Hamilton cycles in random directed graphs. J. Algorithms 9 181–204.

[13]Frieze, A. and Krivelevich, M. (2008) On two Hamilton cycle problems in random graphs. Israel J. Math. 166 221–234.

[14]Ghouila-Houri, A. (1960) Une condition suffisante d’existence d’un circuit Hamiltonien. CR Acad. Sci. Paris 251 495–497.

[15]Glebov, R. (2013) On Hamilton cycles and other spanning structures. PhD thesis.

[16]Hefetz, D., Krivelevich, M. and Szabó, T. (2012) Sharp threshold for the appearance of certain spanning trees in random graphs. Random Struct. Algorithms 41 391–412.

[17]Hefetz, D., Steger, A. and Sudakov, B. (2016) Random directed graphs are robustly Hamiltonian. Random Struct. Algorithms 49 345–362.

[18]Janson, S., Łuczak, T. and Ruciński, A. (2011) Random Graphs, Wiley.

[19]Komlós, J. and Szemerédi, E. (1983) Limit distribution for the existence of Hamiltonian cycles in a random graph. Discrete Math. 43 55–63.

[20]Korshunov, A. (1976) Solution of a problem of Erdős and Rényi on Hamilton cycles in non-oriented graphs. Soviet Math. Dokl. 17 760–764.

[21]Krivelevich, M., Lee, C. and Sudakov, B. (2010) Resilient pancyclicity of random and pseudorandom graphs. SIAM J. Discrete Math. 24 1–16.

[22]Lee, C. and Sudakov, B. (2012) Dirac’s theorem for random graphs. Random Struct. Algorithms 41 293–305.

[23]McDiarmid, C. (1983) General first-passage percolation. Adv. Appl. Probab. 15 149–161.

[24]Montgomery, R. (2019) Hamiltonicity in random graphs is born resilient. J. Comb. Theory Ser. B. 139 316–341.

[25]Nenadov, R., Steger, A. and Trujić, M. Resilience of perfect matchings and Hamiltonicity in random graph processes. *Random Struct. Algorithms*, 54 797–819.

[26]Pittel, B. (1982) On the probable behaviour of some algorithms for finding the stability number of a graph. *Math. Proc. Cambridge Philos. Soc.* 92 511–526.

[27]Pósa, L. (1976) Hamiltonian circuits in random graphs. Discrete Math. 14 359–364.

[28]Rödl, V., Szemerédi, E. and Ruciński, A. (2008) An approximate Dirac-type theorem for *k*-uniform hypergraphs. Combinatorica 28 229–260.

[29]Spencer, J. (1977) Asymptotic lower bounds for Ramsey functions. Discrete Math. 20 69–76.

[30]Sudakov, B. (2017) Robustness of graph properties. In *Surveys in Combinatorics 2017*, Vol. 440 of London Mathematical Society Lecture Note Series, pp. 372–408, Cambridge University Press.

[31]Sudakov, B. and Vu, V. (2008) Local resilience of graphs. Random Struct. Algorithms 33 409–433.