Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-19T06:01:36.572Z Has data issue: false hasContentIssue false

Emotional distress, brain functioning, and biobehavioral processes in cancer patients: a neuroimaging review and future directions

Published online by Cambridge University Press:  23 April 2019

Joaquim C. Reis*
Affiliation:
Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
Michael H. Antoni
Affiliation:
Department of Psychology, University of Miami, Coral Gables, Florida, USA Cancer Control Program, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
Luzia Travado
Affiliation:
Psycho-oncology, Champalimaud Clinical and Research Center, Champalimaud Foundation, Lisbon, Portugal
*
*Address correspondence to: Joaquim C. Reis 0000-0003-0737-0955, Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal. (Email: jdcreis@fc.ul.pt)

Abstract

Despite emerging evidence that distress and adversity can contribute to negative health outcomes in cancer, little is known about the brain networks, regions, or circuits that can contribute to individual differences in affect/distress states and health outcomes in treated cancer patients. To understand the state-of-the-science in this regard, we reviewed neuroimaging studies with cancer patients that examined the associations between negative affect (distress) and changes in the metabolism or structure of brain regions. Cancer patients showed changes in function and/or structure of key brain regions such as the prefrontal cortex, thalamus, amygdala, hippocampus, cingulate cortex (mainly subgenual area), hypothalamus, basal ganglia (striatum and caudate), and insula, which are associated with greater anxiety, depression, posttraumatic stress disorder (PTSD) symptoms, and distress. These results provide insights for understanding the effects of these psychological and emotional factors on peripheral stress-related biobehavioral pathways known to contribute to cancer progression and long-term health outcomes. This line of work provides leads for understanding the brain-mediated mechanisms that may explain the health effects of psychosocial interventions in cancer patients and survivors. A multilevel and integrated model for distress management intervention effects on psychological adaptation, biobehavioral processes, cancer pathogenesis, and clinical outcomes is proposed for future research.

Type
Review
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by Fundação para a Ciência e Tecnologia in the framework of the project Distress and regional brain metabolism: a correlational study in metastatic breast cancer patients. PTDC/MHC-PSC/3897/2014, and through funding from the National Cancer Institute (CA064710, HHSN261200800001E), Florida Department of Health (6BC06), and the University of Miami Sylvester Comprehensive Cancer Center.

References

References:

Ganz, PA, Hahn, EE. Implementing a survivorship care plan for patients with breast cancer. J Clin Oncol. 2008;26(5):759767. doi: 10.1200/JCO.2007.14.2851.Google Scholar
Lehto, R, Therrien, B.Death concerns among individuals newly diagnosed with lung cancer. Death Stud. 2010;34(10):931946. doi: 10.1080/07481181003765477.Google Scholar
McFarland, DC, Shaffer, KM, Tiersten, A, et al.Physical symptom burden and its association with distress, anxiety, and depression in breast cancer. Psychosomatics. 2018;59(5):464471. doi: 10.1016/j.psym.2018.01.005.Google Scholar
Purnell, JQ, Andersen, BL. Religious practice and spirituality in the psychological adjustment of survivors of breast cancer. Couns Values. 2009;53(3):165182.Google Scholar
Jim, HS, Richardson, SA, Golden-Kreutz, DM, et al.Strategies used in coping with a cancer diagnosis predict meaning in life for survivors. Heal Psychol. 2006;25(6):753761. doi: 10.1037/0278-6133.25.6.753.Google Scholar
Antoni, MH.Psychosocial intervention effects on adaptation, disease course and biobehavioral processes in cancer. Brain Behav Immun. 2013;30(Suppl):S88S98. doi: 10.1016/j.bbi.2012.05.009.Google Scholar
Travado, L, Reis, JC.Breast cancer meanings: a cognitive-developmental study. Psychooncology. 2013;22(9):20162023. doi: 10.1002/pon.3246.Google Scholar
Kreitler, S, Peleg, D, Ehrenfeld, M.Stress, self-efficacy and quality of life in cancer patients. Psychooncology. 2007;16(4):329341. doi: 10.1002/pon.1063.Google Scholar
Bergerot, CD, Araujo, TC. Assessment of distress and quality of life of cancer patients over the course of chemotherapy. Invest Educ Enferm. 2014;32(2):216224. doi: 10.1590/S0120-53072014000200004.Google Scholar
Bauer, MR, Bright, EE, MacDonald, JJ, et al.Quality of life in patients with pancreatic cancer and their caregivers: a systematic review. Pancreas. 2018;47(4):368375. doi: 10.1097/MPA.0000000000001025.Google Scholar
Weitman, ES, Perez, M, Thompson, JF, et al.Quality of life patient-reported outcomes for locally advanced cutaneous melanoma. Melanoma Res. 2018;28(2):134142. doi: 10.1097/CMR.0000000000000425.Google Scholar
Montazeri, A.Health-related quality of life in breast cancer patients: a bibliographic review of the literature from 1974 to 2007. J Exp Clin Cancer Res. 2008;27(1):32. doi: 10.1186/1756-9966-27-32.Google Scholar
Howard-Anderson, J, Ganz, PA, Bower, JE, et al.Quality of life, fertility concerns, and behavioral health outcomes in younger breast cancer survivors: a systematic review. J Natl Cancer Inst. 2012;104(5):386405. doi: 10.1093/jnci/djr541.Google Scholar
Adler, NE, Page, AEK, eds. Cancer Care for the Whole Patient: Meeting Psychosocial Health Needs. Washington, DC: National Academies Press; 2008.Google Scholar
Zabora, J, Brintzenhofeszoc, K, Curbow, B, et al.The prevalence of psychological distress by cancer site. Psychooncology. 2001;10(1):1928. doi: 10.1002/1099-1611(200101/02)10:1<19::AID-PON501>3.0.CO;2-6.3.0.CO;2-6.>Google Scholar
Grassi, L, Travado, L, Gil, F, et al.Hopelessness and related variables among cancer patients in the Southern European Psycho-oncology Study (SEPOS). Psychosomatics. 2010;51(3):201207. doi: 10.1176/appi.psy.51.3.201.Google Scholar
Mitchell, AJ, Ferguson, DW, Gill, J, et al.Depression and anxiety in long-term cancer survivors compared with spouses and healthy controls: a systematic review and meta-analysis. Lancet Oncol. 2013;14(8):721732. doi: 10.1016/S1470-2045(13)70244-4.Google Scholar
Linden, W, Vodermaier, A, MacKenzie, R, et al.Anxiety and depression after cancer diagnosis: prevalence rates by cancer type, gender, and age. J Affect Disord. 2012;141(2–3):343351. doi: 10.1016/j.jad.2012.03.025.Google Scholar
Lutgendorf, SK, Sood, AK, Antoni, MH. Host factors and cancer progression: biobehavioral signaling pathways and interventions. J Clin Oncol. 2010;28(26):40944099. doi: 10.1200/JCO.2009.26.9357.Google Scholar
Lindquist, KA, Satpute, AB, Wager, TD, et al.The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature. Cereb Cortex. 2016;26(5):19101922. doi: 10.1093/cercor/bhv001.Google Scholar
Lindquist, KA, Wager, TD, Kober, H, et al.The brain basis of emotion: a meta-analytic review. Behav Brain Sci. 2012;35(3):121143. doi: 10.1017/S0140525X11000446.Google Scholar
Gianaros, PJ, Wager, TD. Brain-body pathways linking psychological stress and physical health. Curr Dir Psychol Sci. 2015;24(4):313321. doi: 10.1177/0963721415581476.Google Scholar
Peters, A, McEwen, BS, Friston, K. Uncertainty and stress: why it causes diseases and how it is mastered by the brain. Prog Neurobiol. 2017;156:164188. doi: 10.1016/j.pneurobio.2017.05.004.Google Scholar
Lazarus, RS, Folkman, S. Stress, Appraisal, and Coping. New York: Springer; 1984.Google Scholar
Mishel, MH.Reconceptualization of the uncertainty in illness theory. Image J Nurs Sch. 1990;22(4):256262. doi: 10.1111/j.1547-5069.1990.tb00225.x.Google Scholar
Christman, NJ.Uncertainty and adjustment during radiotherapy. Nurs Res. 1990;39(1):1747.Google Scholar
Mishel, MH, Sorenson, DS. Uncertainty in gynecological cancer: a test of the mediating functions of mastery and coping. Nurs Res. 1991;40(3):167171.Google Scholar
Wright, LJ, Afari, N, Zautra, A. The illness uncertainty concept: a review. Curr Pain Headache Rep. 2009;13(2):133138. doi: 10.1007/s11916-009-0023-z.Google Scholar
Karatsoreos, IN, McEwen, BS. Stress and brain function. In: Fink, G, Pfaff, DW, Levine, JE, eds. Handbook of Neuroendocrinology. San Diego: Academic Press; 2012: 497507. doi: https://doi.org/10.1016/B978-0-12-375097-6.10021-6.Google Scholar
McEwen, BS.Allostasis and the epigenetics of brain and body health over the life course. JAMA Psychiatry. 2017;74(6):551552. doi: 10.1001/jamapsychiatry.2017.0270.Google Scholar
McEwen, BS, Nasca, C, Gray, JD. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2016;41(1):323. doi: 10.1038/npp.2015.171.Google Scholar
Davidson, RJ, McEwen, BS. Social influences on neuroplasticity: stress and interventions to promote well-being. Nat Neurosci. 2012;15(5):689695. doi: 10.1038/nn.3093.Google Scholar
McEwen, BS.Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87(3):873904. doi: 10.1152/physrev.00041.2006.Google Scholar
McEwen, BS, Gianaros, PJ. Stress- and allostasis-induced brain plasticity. Annu Rev Med. 2011;62(1):431445. doi: 10.1146/annurev-med-052209-100430.Google Scholar
Jahn, AL, Fox, AS, Abercrombie, HC, et al.Subgenual prefrontal cortex activity predicts individual differences in hypothalamic-pituitary-adrenal activity across different contexts. Biol Psychiatry. 2010;67(2):175181. doi: 10.1016/j.biopsych.2009.07.039.Google Scholar
Tashiro, M, Kubota, K, Itoh, M, et al.Hypometabolism in the limbic system of cancer patients observed by positron emission tomography. Psychooncology. 1999;8(4):283286. doi: 10.1002/(SICI)1099-1611(199907/08)8:4<283::AID-PON384>3.0.CO;2-A.3.0.CO;2-A.>Google Scholar
Davidson, RJ, Pizzagalli, D, Nitschke, JB, et al.Depression: perspectives from affective neuroscience. Annu Rev Psychol. 2002;53(1):545574. doi: 10.1146/annurev.psych.53.100901.135148.Google Scholar
Gotlib, IH, Hamilton, JP. Neuroimaging and depression. Curr Dir Psychol Sci. 2008;17(2):159163. doi: 10.1111/j.1467-8721.2008.00567.x.Google Scholar
Hamilton, JP, Etkin, A, Furman, DJ, et al.Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of baseline activation and neural response data. Am J Psychiatry. 2012;169(7):693703. doi: 10.1176/appi.ajp.2012.11071105.Google Scholar
McGrath, CL, Kelley, ME, Holtzheimer, PE, et al.Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry. 2013;70(8):821829. doi: 10.1001/jamapsychiatry.2013.143.Google Scholar
Sacher, J, Neumann, J, Fünfstück, T, et al.Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord. 2012;140(2):142148. doi: 10.1016/j.jad.2011.08.001.Google Scholar
Drevets, W, Bogers, W, Raichle, M.Functional anatomical correlates of antidepressant drug treatment using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002;12(6):527544. doi: 10.1016/S0924-977X(02)00102-5.Google Scholar
Drevets, WC, Raichle, ME. Neuroanatomical circuits in depression: implications for treatment mechanisms. Psychopharmacol Bull. 1992;28(3):261274.Google Scholar
Gonul, AS, Kula, M, Bilgin, AG, et al.The regional cerebral blood flow changes in major depressive disorder with and without psychotic features. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(6):10151021. doi: 10.1016/j.pnpbp.2004.05.036.Google Scholar
Mayberg, HS, Lozano, AM, Voon, V, et al.Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651660. doi: 10.1016/j.neuron.2005.02.014.Google Scholar
Kegeles, LS, Malone, KM, Slifstein, M, et al.Response of cortical metabolic deficits to serotonergic challenge in familial mood disorders. Am J Psychiatry. 2003;160(1):7682. doi: 10.1176/appi.ajp.160.1.76.Google Scholar
Müller, VI, Cieslik, EC, Serbanescu, I, et al.Altered brain activity in unipolar depression revisited. JAMA Psychiatry. 2017;74(1):4755. doi: 10.1001/jamapsychiatry.2016.2783.Google Scholar
Palmer, SM, Crewther, SG, Carey, LM. A meta-analysis of changes in brain activity in clinical depression. Front Hum Neurosci. 2015;8:1045. doi: 10.3389/fnhum.2014.01045.Google Scholar
Sacher, J, Neumann, J, Fünfstück, T, Soliman, A, Villringer, A, Schroeter, ML.Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord. 2012;140(2):142148. doi: 10.1016/j.jad.2011.08.001.Google Scholar
Fang, L, Yao, Z, An, J, et al.Topological organization of metabolic brain networks in pre-chemotherapy cancer with depression: a resting-State PET study. PLoS One. 2016;11(11):119. doi: 10.1371/journal.pone.0166049.Google Scholar
Tashiro, M, Itoh, M, Kubota, K, et al.Relationship between trait anxiety, brain activity and natural killer cell activity in cancer patients: a preliminary PET study. Psychooncology. 2001;10(6):541546. doi: 10.1002/pon.548[pii].Google Scholar
Tashiro, M, Juengling, FD, Reinhardt, MJ, et al.Depressive state and regional cerebral activity in cancer patients—a preliminary study. Med Sci Monit. 2001;7(4):687695.Google Scholar
Tashiro, M, Kubota, K, Itoh, M, et al.Regional cerebral glucose metabolism of patients with malignant diseases in different clinical phases. Med Sci Monit. 2001;7(2):226232.Google Scholar
Tashiro, M, Juengling, FD, Reinhardt, MJ, et al.Reproducibility of PET brain mapping of cancer patients. Psychooncology. 2000;9(2):157163. doi: 10.1002/(SICI)1099-1611(200003/04)9:2<157::AID-PON452>3.0.CO;2-Y.3.0.CO;2-Y.>Google Scholar
Kumano, H, Ida, I, Oshima, A, et al.Brain metabolic changes associated with predispotion to onset of major depressive disorder and adjustment disorder in cancer patients—a preliminary PET study. J Psychiatr Res. 2007;41(7):591599. doi: 10.1016/j.jpsychires.2006.03.006.Google Scholar
Inagaki, M, Yoshikawa, E, Kobayakawa, M, et al.Regional cerebral glucose metabolism in patients with secondary depressive episodes after fatal pancreatic cancer diagnosis. J Affect Disord. 2007;99(1–3):231236. doi: 10.1016/j.jad.2006.08.019.Google Scholar
Zung, WWK. A self-rating depression scale. Arch Gen Psychiatry. 1965;12(1):6370. doi: 10.1001/archpsyc.1965.01720310065008.Google Scholar
Taylor, JA.A personality scale of manifest anxiety. J Abnorm Soc Psychol. 1953;48(2):285290. doi: 10.1037/h0056264.Google Scholar
Hamilton, M.A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23(1):5662. doi: 10.1136/jnnp.23.1.56.Google Scholar
Spielberger, C. Manual for the State-Trait Anxiety Inventory (STAI). Palo Alto, CA: Consulting Psychologists Press; 1983. doi: 10.1007/978-0-387-78665-0_6709.Google Scholar
Castelli, L, Tonello, D, D’Agata, F, et al.The neurobiological basis of the distress thermometer: a PET study in cancer patients. Stress Health. 2015;31(3):197203. doi: 10.1002/smi.2546.Google Scholar
National Comprehensive Cancer Network. NCCN Distress Thermometer and Problem List for Patients. https://www.nccn.org/patients/resources/life_with_cancer/pdf/nccn_distress_thermometer.pdf. Accessed August 20, 2018.Google Scholar
Zigmond, AS, Snaith, RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361370. doi: 10.1111/j.1600-0447.1983.tb09716.x.Google Scholar
Pessoa, L.Understanding brain networks and brain organization. Phys Life Rev. 2014;11(3):400435. doi: 10.1016/j.plrev.2014.03.005.Google Scholar
Kleckner, IR, Zhang, J, Touroutoglou, A, et al.Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat Hum Behav. 2017;1(5):0069. doi: 10.1038/s41562-017-0069.Google Scholar
Barrett, LF.How Emotions Are Made: The Secret Life of the Brain. Boston: Houghton Mifflin Harcourt; 2017.Google Scholar
Barrett, LF, Satpute, AB. Large scale brain networks in affective and social neuroscience—towards an integrative functional architecture of the brain. Curr Opin Neurobiol. 2013;23(3): 361372. doi: 10.1016/j.conb.2012.12.012.Google Scholar
Bullmore, E, Sporns, O.Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186198. doi: 10.1038/nrn2575.Google Scholar
Sheline, YI, Price, JL, Yan, Z, et al.Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci. 2010;107(24):1102011025. doi: 10.1073/pnas.1000446107.Google Scholar
Kaiser, RH, Andrews-Hanna, JR, Wager, TD, et al.Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry. 2015;72(6):603611. doi: 10.1001/jamapsychiatry.2015.0071.Google Scholar
Beck, AT, Steer, RA. Internal consistencies of the original and revised Beck depression inventory. J Clin Psychol. 1984;40(6):13651367. doi: 10.1002/1097-4679(198411)40:6<1365::AID-JCLP2270400615>3.0.CO;2-D.3.0.CO;2-D.>Google Scholar
Nakano, T, Wenner, M, Inagaki, M, et al.Relationship between distressing cancer-related recollections and hippocampal volume in cancer survivors. Am J Psychiatry. 2002;159(12):20872093. doi: 10.1176/appi.ajp.159.12.2087.Google Scholar
Matsuoka, Y, Yamawaki, S, Inagaki, M, Akechi, T, Uchitomi, Y.A volumetric study of amygdala in cancer survivors with intrusive recollections. Biol Psychiatry. 2003;54(7):736743. doi: 10.1016/S0006-3223(02)01907-8.Google Scholar
Inagaki, M, Matsuoka, Y, Sugahara, Y, et al.Hippocampal volume and first major depressive episode after cancer diagnosis in breast cancer survivors. Am J Psychiatry. 2004;161(12):22632270. doi: 161/12/2263 [pii]\r10.1176/appi.ajp.161.12.2263.Google Scholar
Yoshikawa, E, Matsuoka, Y, Yamasue, H, et al.Prefrontal cortex and amygdala volume in first minor or major depressive episode after cancer diagnosis. Biol Psychiatry. 2006;59(8):707712. doi: 10.1016/j.biopsych.2005.08.018.Google Scholar
Tashiro, M, Itoh, M, Kubota, K, et al.Neuroimaging of cancer patients for psychosocial support and patient care. Curr Med Imaging Rev. 2008;4(1):1924. wos:000253959300005.Google Scholar
Barrett, LF, Simmons, WK. Interoceptive predictions in the brain. Nat Rev Neurosci. 2015;16(7):419429. doi: 10.1038/nrn3950.Google Scholar
Strigo, IA, Craig, AD. Interoception, homeostatic emotions and sympathovagal balance. Philos Trans R Soc London B Biol Sci. 2016;371(1708):19. doi: 10.1098/rstb.2016.0010.Google Scholar
Weingarten, CP, Strauman, TJ. Neuroimaging for psychotherapy research: current trends. Psychother Res. 2015;25(2):185213. doi: 10.1080/10503307.2014.883088.Google Scholar
Geuter, S, Lindquist, MA, Wager, TD. Fundamentals of functional neuroimaging. In: Cacioppo, J, Tassinary, LG, Berntson, GG, eds. Handbook of Psychophysiology. 4th ed. New York: Cambridge University Press; 2016:4173. doi: 10.1017/9781107415782.004.Google Scholar
Button, KS, Ioannidis, JPA, Mokrysz, C, et al.Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14(5):365376. doi: 10.1038/nrn3475.Google Scholar
Martel, S, Bruzzone, M, Ceppi, M, et al.Risk of adverse events with the addition of targeted agents to endocrine therapy in patients with hormone receptor-positive metastatic breast cancer: a systematic review and meta-analysis. Cancer Treat Rev. 2018;62:123132. doi: 10.1016/j.ctrv.2017.09.009.Google Scholar
Conroy, SK, McDonald, BC, Smith, DJ, et al.Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Res Treat. 2013;137(2):493502. doi: 10.1007/s10549-012-2385-x.Google Scholar
Ahles, TA, Root, JC. Cognitive effects of cancer and cancer treatments. Annu Rev Clin Psychol. 2018;14:425451. doi: 10.1146/annurev-clinpsy-050817.Google Scholar
Cacioppo, JT, Berntson, GG. Integrative neuroscience for the behavioral sciences: implications for inductive inference. In: Berntson, GG, Cacioppo, JT, eds. Handbook of Neuroscience for the Behavioral Sciences. Hoboken, NJ: Wiley; 2009:311. doi: 10.1002/9780470478509.neubb001002.Google Scholar
Taylor, AG, Goehler, LE, Galper, DI, et al.Top-down and bottom-up mechanisms in mind-body medicine: development of an integrative framework for psychophysiological research. Explore (NY). 2010;6(1):2941. doi: 10.1016/j.explore.2009.10.004.Google Scholar
Goshen, I, Yirmiya, R.Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol. 2009;30(1):3045. doi: 10.1016/j.yfrne.2008.10.001.Google Scholar
Yirmiya, R, Goshen, I.Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25(2):181213. doi: 10.1016/j.bbi.2010.10.015.Google Scholar
Kronfol, Z, Remick, DG.Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry. 2000;157(5):683694. doi: 10.1176/appi.ajp.157.5.683.Google Scholar
Wilson, CJ, Finch, CE, Cohen, HJ. Cytokines and cognition—the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc. 2002;50(12):20412056. doi: 10.1046/j.1532-5415.2002.50619.x.Google Scholar
Quan, N, Banks, WA.Brain-immune communication pathways. Brain Behav Immun. 2007;21(6):727735. doi: 10.1016/j.bbi.2007.05.005.Google Scholar
Hoemann, K, Gendron, M, Barrett, LF.Mixed emotions in the predictive brain. Curr Opin Behav Sci. 2017;15:5157. doi: 10.1016/j.cobeha.2017.05.013.Google Scholar
Sterling, P.Allostasis: a model of predictive regulation. Physiol Behav. 2012;106(1):515. doi: 10.1016/j.physbeh.2011.06.004.Google Scholar
Miller, GE, Cohen, S, Ritchey, AK. Chronic psychological stress and the regulation of pro-inflammatory cytokines: a glucocorticoid-resistance model. Health Psychol. 2002;21(6):531541. doi: 10.1037//0278-6133.21.6.531.Google Scholar
Goldapple, K, Segal, Z, Garson, C, et al.Modulation of cortical-limbic pathways in major depression. Arch Gen Psychiatry. 2004;61(1):3441. doi: 10.1001/archpsyc.61.1.34.Google Scholar
Aupperle, RL, Allard, CB, Simmons, AN, et al.Neural responses during emotional processing before and after cognitive trauma therapy for battered women. Psychiatry Res. 2013;214(1):4855. doi: 10.1016/j.pscychresns.2013.05.001.Google Scholar
Damasio, A, Carvalho, GB.The nature of feelings: evolutionary and neurobiological origins. Nat Rev Neurosci. 2013;14(2):143152. doi: 10.1038/nrn3403.Google Scholar
Craig, AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655666. doi: 10.1038/nrn894.Google Scholar
Ceunen, E, Vlaeyen, JWS, Van Diest, I. On the origin of interoception. Front Psychol. 2016;7:743. doi: 10.3389/fpsyg.2016.00743.Google Scholar
Craig, AD.Interoception and emotion: a neuroanatomical perspective. In: Lewis, M, Haviland-Jones, JM, Barrett, LF, eds. Handbook of Emotions. 3rd ed. New York: Guilford Press; 2008:272292.Google Scholar
Critchley, HD, Harrison, NA. Visceral influences on brain and behavior. Neuron. 2013;77(4):624638. doi: 10.1016/j.neuron.2013.02.008.Google Scholar
Dantzer, R, O’Connor, JC, Freund, GG, et al.From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):4656. doi: 10.1038/nrn2297.Google Scholar
Critchley, HD, Garfinkel, SN. Interoception and emotion. Curr Opin Psychol. 2017;17:714. doi: 10.1016/j.copsyc.2017.04.020.Google Scholar
Dantzer, R, Kelley, KW.Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21(2):153160. doi: 10.1016/j.bbi.2006.09.006.Google Scholar
Walker, AK, Kavelaars, A, Heijnen, CJ, et al.Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev. 2013;66(1):80101. doi: 10.1124/pr.113.008144.Google Scholar
Wang, X, Walitt, B, Saligan, L, et al.Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine. 2015;72(1):8696. doi: 10.1016/j.cyto.2014.12.006.Google Scholar
Bompaire, F, Durand, T, Léger-Hardy, I, et al.Chemotherapy-related cognitive impairment or « chemobrain »: concept and state of art. Geriatr Psychol Neuropsychiatr Vieil. 2017;15(1):8998. doi: 10.1684/pnv.2017.0659.Google Scholar
Hurria, A, Somlo, G, Ahles, T.Renaming “chemobrain”. Cancer Invest. 2007;25(6):373377. doi: 10.1080/07357900701506672.Google Scholar
Cheung, YT, Ng, T, Shwe, M, et al.Association of proinflammatory cytokines and chemotherapy-associated cognitive impairment in breast cancer patients: a multi-centered, prospective, cohort study. Ann Oncol. 2015;26(7):14461451. doi: 10.1093/annonc/mdv206.Google Scholar
Kesler, SR.Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiol Aging. 2014;35(Suppl 2):S11S19. doi: 10.1016/j.neurobiolaging.2014.03.036.Google Scholar
Buckner, RL, Andrews-Hanna, JR, Schacter, DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:138. doi: 10.1196/annals.1440.011.Google Scholar
Simó, M, Rifà-Ros, X, Rodriguez-Fornells, A, Bruna, J.Chemobrain: a systematic review of structural and functional neuroimaging studies. Neurosci Biobehav Rev. 2013;37(8):13111321. doi: 10.1016/j.neubiorev.2013.04.015.Google Scholar
Costanzo, ES, Sood, AK, Lutgendorf, SK. Biobehavioral influences on cancer progression. Immunol Allergy Clin North Am. 2011;31(1):109132. doi: 10.1016/j.iac.2010.09.001.Google Scholar
Lutgendorf, SK, Andersen, BL. Biobehavioral approaches to cancer progression and survival. Am Psychol. 2015;70(2):186197. doi: 10.1037/a0035730.Google Scholar
Ader, R, Cohen, N, Felten, D.Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet. 1995;345(8942):99103. doi: 10.1016/S0140-6736(95)90066-7.Google Scholar
Lutgendorf, SK, Costanzo, ES. Psychoneuroimmunology and health psychology: an integrative model. Brain Behav Immun. 2003;17(4):225232. doi: 10.1016/S0889-1591(03)00033-3.Google Scholar
McDonald, PG, O’Connell, M, Lutgendorf, SK. Psychoneuroimmunology and cancer: a decade of discovery, paradigm shifts, and methodological innovations. Brain Behav Immun. 2013;30(Suppl):S1S9. doi: 10.1016/J.BBI.2013.01.003.Google Scholar
Antoni, MH, Lutgendorf, SK, Cole, SW, et al.The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer. 2006;6(3):240248. doi: 10.1038/nrc1820.Google Scholar
Cole, SW, Nagaraja, AS, Lutgendorf, SK, et al.Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer. 2015;15(9):563572. doi: 10.1038/nrc3978.Google Scholar
Abercrombie, HC, Giese-Davis, J, Sephton, S, et al.Flattened cortisol rhythms in metastatic breast cancer patients. Psychoneuroendocrinology. 2004;29(8):10821092. doi: 10.1016/j.psyneuen.2003.11.003.Google Scholar
Sephton, SE, Sapolsky, RM, Kraemer, HC, et al.Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst. 2000;92(12):9941000. doi: 10.1093/JNCI/92.12.994.Google Scholar
Cohen, L, Cole, SW, Sood, AK, et al.Depressive symptoms and cortisol rhythmicity predict survival in patients with renal cell carcinoma: role of inflammatory signaling. PLoS One. 2012;7(8):e42324. doi: 10.1371/journal.pone.0042324.Google Scholar
Sephton, SE, Lush, E, Dedert, EA, et al.Diurnal cortisol rhythm as a predictor of lung cancer survival. Brain Behav Immun. 2013;30(Suppl):S163S170. doi: 10.1016/j.bbi.2012.07.019.Google Scholar
Siegel, RL, Miller, KD, Jemal, A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):730. doi: 10.3322/caac.21442.Google Scholar
Bouchard, LC, Antoni, MH, Blomberg, BB, et al.Postsurgical depressive symptoms and proinflammatory cytokine elevations in women undergoing primary treatment for breast cancer. Psychosom Med. 2016;78(1):2637. doi: 10.1097/PSY.0000000000000261.Google Scholar
Antoni, MH, Lutgendorf, SK, Blomberg, B, et al.Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics. Biol Psychiatry. 2012;71(4):366372. doi: 10.1016/j.biopsych.2011.10.007.Google Scholar
Antoni, MH, Jacobs, JM, Bouchard, LC, et al.Post-surgical depressive symptoms and long-term survival in non-metastatic breast cancer patients at 11-year follow-up. Gen Hosp Psychiatry. 2017;44:1621. doi: 10.1016/j.genhosppsych.2016.10.002.Google Scholar
Antoni, MH, Bouchard, LC, Jacobs, JM, et al.Stress management, leukocyte transcriptional changes and breast cancer recurrence in a randomized trial: an exploratory analysis. Psychoneuroendocrinology. 2016;74(6188):269277. doi: 10.1016/j.psyneuen.2016.09.012.Google Scholar
Cole, SW, Sood, AK. Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res. 2012;18(5):12011206. doi: 10.1158/1078-0432.CCR-11-0641.Google Scholar
Cole, SW.Human social genomics. PLoS Genet. 2014;10(8):410. doi: 10.1371/journal.pgen.1004601.Google Scholar
Slavich, GM, Cole, SW. The emerging field of human social genomics. Clin Psychol Sci. 2013;1(3):331348. doi: 10.1177/2167702613478594.Google Scholar
Miller, G, Chen, E, Cole, SW.Health psychology: developing biologically plausible models linking the social world and physical health. Annu Rev Psychol. 2009;60(1):501524. doi: 10.1146/annurev.psych.60.110707.163551.Google Scholar
Cohen, S, Doyle, WJ, Skoner, DP. Psychological stress, cytokine production, and severity of upper respiratory illness. Psychosom Med. 1999;61(2):175180. doi: 10.1097/00006842-199903000-00009.Google Scholar
Antoni, MH, Lechner, S, Diaz, A, et al.Cognitive behavioral stress management effects on psychosocial and physiological adaptation in women undergoing treatment for breast cancer. Brain Behav Immun. 2009;23(5):580591. doi: 10.1016/j.bbi.2008.09.005.Google Scholar
Van Der Pompe, G, Antoni, MH, Heijnen, CJ. Elevated basal cortisol levels and attenuated ACTH and cortisol responses to a behavioral challenge in women with metastatic breast cancer. Psychoneuroendocrinology. 1996;21(4):361374. doi: 10.1016/0306-4530(96)00009-1.Google Scholar
Antoni, MH, Lechner, SC, Kazi, A, et al.How stress management improves quality of life after treatment for breast cancer. J Consult Clin Psychol. 2006;74(6):11431152. doi: 10.1037/0022-006X.74.6.1152.Google Scholar
Phillips, KM, Antoni, MH, Carver, CS, et al.Stress management skills and reductions in serum cortisol across the year after surgery for non-metastatic breast cancer. Cognit Ther Res. 2011;35(6):595600. doi: 10.1007/s10608-011-9398-3.Google Scholar
Phillips, KM, Antoni, MH, Lechner, SC, et al.Stress management intervention reduces serum cortisol and increases relaxation during treatment for nonmetastatic breast cancer. Psychosom Med. 2008;70(9):10441049. doi: 10.1097/PSY.0b013e318186fb27.Google Scholar
Andersen, BL, Farrar, WB, Golden-Kreutz, DM, et al.Psychological, behavioral, and immune changes after a psychological intervention: a clinical trial. J Clin Oncol. 2004;22(17):35703580. doi: 10.1200/JCO.2004.06.030.Google Scholar
Andersen, BL, Yang, H-C, Farrar, WB, etal.Psychologic intervention improves survival for breast cancer patients. Cancer. 2008;113(12):34503458. doi: 10.1002/cncr.23969.Google Scholar
Stagl, JM, Lechner, SC, Carver, CS, et al.A randomized controlled trial of cognitive-behavioral stress management in breast cancer: survival and recurrence at 11-year follow-up. Breast Cancer Res Treat. 2015;154(2):319328. doi: 10.1007/s10549-015-3626-6.Google Scholar
Andersen, BL, Thornton, LM, Shapiro, CL, et al.Biobehavioral, immune, and health benefits following recurrence for psychological intervention participants. Clin Cancer Res. 2010;16(12):32703278. doi: 10.1158/1078-0432.CCR-10-0278.Google Scholar
Thornton, LM, Andersen, BL, Carson, WE. Immune, endocrine, and behavioral precursors to breast cancer recurrence: a case-control analysis. Cancer Immunol Immunother. 2008;57(10):14711481. doi: 10.1007/s00262-008-0485-6.Google Scholar
Thornton, LM, Andersen, BL, Schuler, TA, et al.A psychological intervention reduces inflammatory markers by alleviating depressive symptoms: secondary analysis of a randomized controlled trial. Psychosom Med. 2009;71(7):715724. doi: 10.1097/PSY.0b013e3181b0545c.Google Scholar
Antoni, MH.Stress Management Intervention for Women with Breast Cancer. Washington, DC: American Psychological Association; 2003. doi: 10.1037/10488-000.Google Scholar
Antoni, MH, Lehman, JM, Kilbourn, KM, et al.Cognitive-behavioral stress management intervention decreases the prevalence of depression and enhances benefit finding among women under treatment for early-stage breast cancer. Health Psychol. 2001;20(1):2032. doi: 10.1037/0278-6133.20.1.20.Google Scholar
Cruess, DG, Antoni, MH, McGregor, BA, et al.Cognitive-behavioral stress management reduces serum cortisol by enhancing benefit finding among women being treated for early stage breast cancer. Psychosom Med. 2000;62(3):304308.Google Scholar
McGregor, BA, Antoni, MH, Boyers, A, et al.Cognitive-behavioral stress management increases benefit finding and immune function among women with early-stage breast cancer. J Psychosom Res. 2004;56(1):18. doi: 10.1016/S0022-3999(03)00036-9.Google Scholar
Beck, AT, Haigh, EAP. Advances in cognitive theory and therapy: the generic cognitive model. Annu Rev Clin Psychol. 2014;10(1):124. doi: 10.1146/annurev-clinpsy-032813-153734.Google Scholar
Ellis, A, Dryden, W.The Practice of Rational Emotive Behavior Therapy. New York: Springer; 1997.Google Scholar
Beck, AT, Dozois, DJA. Cognitive therapy: current status and future directions. Annu Rev Med. 2011;62:397409. doi: 10.1146/annurev-med-052209-100032.Google Scholar
Hofmann, SG, Asmundson, GJG, Beck, AT. The science of cognitive therapy. Behav Ther. 2013;44(2):199212. doi: 10.1016/j.beth.2009.01.007.Google Scholar
Beck, AT.The evolution of the cognitive model of depression and its neurobiological correlates. Am J Psychiatry. 2008;165(8):969977. doi: 10.1176/appi.ajp.2008.08050721.Google Scholar
Harmer, CJ, O’sullivan, U, Massey-Chase, R, et al.Effect of acute antidepressant administration on negative affective bias in depressed patients. Am J Psychiatry. 2009;166(10):11781184. doi: 10.1176/appi.ajp.2009.09020149.Google Scholar
Dobson, D, Dobson, K.Evidence-Based Practice of Cognitive-Behavioral Therapy. New York: Guilford Press; 2009. doi: 10.1080/16506070903190260.Google Scholar
Sharpe, L, Sensky, T, Timberlake, N, Ryan, B, et al.A blind, randomized, controlled trial of cognitive-behavioural intervention for patients with recent onset rheumatoid arthritis: preventing psychological and physical morbidity. Pain. 2001;89(2–3):275283. doi: 10.1016/S0304-3959(00)00379-1.Google Scholar
Leventhal, H, Phillips, LA, Burns, E. The common-sense model of self-regulation (CSM): a dynamic framework for understanding illness self-management. J Behav Med. 2016;39(6):935946. doi: 10.1007/s10865-016-9782-2.Google Scholar
Collie, K, Bottorff, JL, Long, BC. A narrative view of art therapy and art making by women with breast cancer. J Health Psychol. 2006;11(5):761775. doi: 10.1177/1359105306066632.Google Scholar
Vickberg, SM, Bovbjerg, DH, DuHamel, KN, et al.Intrusive thoughts and psychological distress among breast cancer survivors: global meaning as a possible protective factor. Behav Med. 2000;25(4):152160. doi: 10.1080/08964280009595744.Google Scholar
Lee, V, Cohen, SR, Edgar, L, et al.Meaning-making and psychological adjustment to cancer: development of an intervention and pilot results. Oncol Nurs Forum. 2006;33(2):291302. doi: 10.1007/s00268-005-0191-x.Google Scholar
Lee, V, Cohen, SR, Edgar, L, Laizner, AM, et al.Meaning-making and psychological adjustment to cancer: development of an intervention and pilot results. Oncol Nurs Forum. 2006;33(2):291302. doi: 10.1188/06.ONF.291-302.Google Scholar
Antoni, MH, Wimberly, SR, Lechner, SC, et al.Reduction of cancer-specific thought intrusions and anxiety symptoms with a stress management intervention among women undergoing treatment for breast cancer. Am J Psychiatry. 2006;163(10):17911797. doi: 10.1176/ajp.2006.163.10.1791.Google Scholar
Ritchie, CS, Kvale, E, Fisch, MJ. Multimorbidity: an issue of growing importance for oncologists. J Oncol Pract. 2011;7(6):371374. doi: 10.1200/JOP.2011.000460.Google Scholar
Sarfati, D, Koczwara, B, Jackson, C.The impact of comorbidity on cancer and its treatments. CA Cancer J Clin. 2016;66(4):337350. doi: 10.3322/caac.21342.Google Scholar
Fu, M, Axelrod, D, Guth, A, et al.Comorbidities and quality of life among breast cancer survivors: a prospective study. J Pers Med. 2015;5(3):229242. doi: 10.3390/jpm5030229.Google Scholar
Søgaard, M, Thomsen, RW, Bossen, KS, et al.The impact of comorbidity on cancer survival: a review. Clin Epidemiol. 2013;5(Suppl 1):329. doi: 10.2147/CLEP.S47150.Google Scholar
Blask, DE, Hill, SM, Dauchy, RT, et al.Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night. J Pineal Res. 2011;51(3):259269. doi: 10.1111/j.1600-079X.2011.00888.x.Google Scholar
Payne, J, Piper, B, Rabinowitz, I, Zimmerman, B.Biomarkers, fatigue, sleep, and depressive symptoms in women with breast cancer: a pilot study. Oncol Nurs Forum. 2006;35(4):635642. doi: 10.1188/06.ONF.775-783.Google Scholar
Roscoe, JA, Kaufman, ME, Matteson-Rusby, SE, et al.Cancer-related fatigue and sleep disorders. Oncologist. 2007;12(Suppl 1):3542. doi: 10.1634/theoncologist.12-S1-35.Google Scholar
Cash, E, Sephton, SE, Chagpar, AB, et al.Circadian disruption and biomarkers of tumor progression in breast cancer patients awaiting surgery. Brain Behav Immun. 2015;48:102114. doi: 10.1016/j.bbi.2015.02.017.Google Scholar
Filipski, E, King, VM, Li, XM, et al.Disruption of circadian coordination accelerates malignant growth in mice. Pathologie Biologie. 2003;51(4):216219. doi: 10.1016/S0369-8114(03)00034-8.Google Scholar
Filipski, E, Li, XM, Lévi, F. Disruption of circadian coordination and malignant growth. Cancer Causes Control. 2006;17(4):509514. doi: 10.1007/s10552-005-9007-4.Google Scholar
Steel, JL, Terhorst, L, Collins, KP, et al.Prospective analyses of cytokine mediation of sleep and survival in the context of advanced cancer. Psychosom Med. 2018;80(5):483491. doi: 10.1097/PSY.0000000000000579.Google Scholar
Basaria, S, Muller, DC, Carducci, MA, et al.Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy. Cancer. 2006;106(3):581588. doi: 10.1002/cncr.21642.Google Scholar
Felicetti, F, Fortunati, N, Brignardello, E.Cancer survivors: An expanding population with an increased cardiometabolic risk. Diabetes Res Clin Pract. 2018;143:432442.Google Scholar
Mottillo, S, Filion, KB, Genest, J, et al.The metabolic syndrome and cardiovascular risk: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):11131132. doi: 10.1016/j.jacc.2010.05.034.Google Scholar
Mehta, LS, Watson, KE, Barac, A, et al.Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation. 2018;137(8):e30e66. doi: 10.1161/CIR.0000000000000556.Google Scholar
Chrousos, GP.The role of stress and the hypothalamic–pituitary–adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. Int J Obes Relat Metab Disord. 2000;24(Suppl 2):S50S55. doi: 10.1038/sj.ijo.0801278.Google Scholar
Bergmann, N, Gyntelberg, F, Faber, J.The appraisal of chronic stress and the development of the metabolic syndrome: a systematic review of prospective cohort studies. Endocr Connect. 2014;3(2):R55R80. doi: 10.1530/EC-14-0031.Google Scholar
Miller, AH, Ancoli-Israel, S, Bower, JE, et al.Neuroendocrine-immune mechanisms of behavioral comorbidities in patients with cancer. J Clin Oncol. 2008;26(6):971982. doi: 10.1200/JCO.2007.10.7805.Google Scholar
Gulliksson, M, Burrell, G, Vessby, B, etal.Randomized controlled trial of cognitive behavioral therapy vs standard treatment to prevent recurrent cardiovascular events in patients with coronary heart disease: Secondary Prevention in Uppsala Primary Health Care project (SUPRIM). Arch Intern Med. 2011;171(2):134140.Google Scholar
Libby, P, Ridker, PM, Maseri, A. Inflammation and atherosclerosis. Circulation. 2002;105(9):11351143. doi: 10.1161/hc0902.104353.Google Scholar
Ben-Eliyahu, S.Cancer metastasis: promotion by stress and surgery. In: Opp, MR, ed. Primer of Psychoneuroimmunology Research. Los Angeles, CA: The Psychoneuroimmunology Research Society; 2016:155164.Google Scholar
Shaashua, L, Shabat-Simon, M, Haldar, R, et al.Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin Cancer Res. 2017;23(16):4651-4661. doi: 10.1158/1078-0432.CCR-17-0152.Google Scholar
Rubinov, M, Sporns, O.Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):10591069. doi: 10.1016/j.neuroimage.2009.10.003.Google Scholar