Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-20T00:11:12.187Z Has data issue: false hasContentIssue false

Brain Plasticity and Brain Stimulation in Neuropsychiatry: Toward Individualized Medicine

Published online by Cambridge University Press:  07 November 2014

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Brain Stimulation
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Levi-Montalcini, R. The nerve growth factor 35 years later. Science. 1987;237:11541162.CrossRefGoogle ScholarPubMed
2.Davies, AM. The role of neurotrophins in the developing nervous system. J Neurobiol. 1994;25:13341348.Google Scholar
3.Castren, E, Zafra, F, Thoenen, H, Lindholm, D. Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc Natl Acad Sci U S A. 1992;89:94449448.Google Scholar
4.Bailey, CH, Kandel, ER, Si, K. The persistence of long-term memory: a molecular approach to self-sustaining changes in learning-induced synaptic growth. Neuron. 2004;44:4957.Google Scholar
5.Bennett, EL, Rosenzweig, MR, Diamond, MC. Rat brain: effects of environmental enrichment on wet and dry weights. Science. 1969;163:825826.Google Scholar
6.Uylings, HB, Kuypers, K, Veltman, WA. Environmental influences on the neocortex in later life. Prog Brain Res. 1978;48:261274.Google Scholar
7.Greenough, WT, Volkmar, FR, Juraska, JM. Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Exp Neurol. 1973;41:371378.Google Scholar
8.Jacobs, B, Batal, HA, Lynch, B, Ojemann, G, Ojemann, LM, Scheibel, AB. Quantitative dendritic and spine analyses of speech cortices: a case study. Brain Lang. 1993;44:239253.CrossRefGoogle ScholarPubMed
9.Banasr, M, Duman, RS. Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol Disord Drug Targets. 2007;6:311320.Google Scholar
10.Jain, KK. Personalized medicine. Curr Opin Mol Ther. 2002;4:548558.Google Scholar
11.Woodcock, K, Pole, JD. Health profile of deaf Canadians: analysis of the Canada Community Health Survey. Can Fam Physician. 2007;53:21402141.Google Scholar
12.Ricoeur, P. Soi-même comme un autre. Paris, France: Seuil; 1990.Google Scholar
13.Evans, WE, Relling, MV. Moving towards individualized medicine with pharmacogenomics. Nature. 2004;429:464468.CrossRefGoogle ScholarPubMed
14.Meeusen, R, Watson, P, Hasegawa, H, Roelands, B, Piacentini, MF. Brain neurotransmitters in fatigue and overtraining. Appl Physiol Nutr Metab. 2007;32:857864.Google Scholar
15.Westrin, A, Lam, RW. Seasonal affective disorder: a clinical update. Ann Clin Psychiatry. 2007;19:239246.Google Scholar
16.Merton, PA, Morton, HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285:227.Google Scholar
17.Barker, AT, Jalinous, R, Freeston, IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1:11061107.Google Scholar
18.Hallett, JJ, Harling-Berg, CJ, Knopf, PM, Stopa, EG, Kiessling, LS. Anti-striatal antibodies in Tourette syndrome cause neuronal dysfunction. J Neuroimmunol. 2000;111:195202.CrossRefGoogle ScholarPubMed
19.Pascual-Leone, A, Walsh, V, Rothwell, J. Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol. 2000;10:232237.Google Scholar
20.Pascual-Leone, A, Tarazona, F, Catalá, MD. Applications of transcranial magnetic stimulation in studies on motor learning. Electroencephalogr Clin Neumphysiol Suppl. 1999;51:157161.Google Scholar
21.Ben-Menachem, E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol. 2002;1:477482.Google Scholar
22.Mayberg, HS. Positron emission tomography imaging in depression: a neural systems perspective. Neuroimaging Clin N Am. 2003;13:805815.Google Scholar
23.Mayberg, HS, Lozano, AM, Voon, V, et al.Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651660.Google Scholar
24.Nuttin, B, Cosyns, P, Demeulemeester, H, Gybels, J, Meyerson, B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet. 1999;354:1526.Google Scholar
25.Sturm, V, Lenartz, D, Koulousakis, A, et al.The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J Chem Neuroanat. 2003;26:293299.Google Scholar
26.Mallet, L, Mesnage, V, Houeto, JL, et al.Compulsions, Parkinson's disease, and stimulation. Lancet. 2002;360:13021304.CrossRefGoogle ScholarPubMed
27.Greenberg, BD, Malone, DA, Friehs, GM, et al.Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology. 2006;31:23842393.Google Scholar
28.Gilbert, DL, Sallee, FR, Zhang, J, Lipps, TD, Wassermann, EM. Transcranial magnetic stimulation-evoked cortical inhibition: a consistent marker of attention-deficit/hyperactivity disorder scores in tourette syndrome. Biol Psychiatry. 2005;57:15971600.Google Scholar
29.Kuhn, J, Lenartz, D, Huff, W, et al.Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications? J Neurol Neurosurg Psychiatry. 2007;78:11521153.Google Scholar